Tevatron Physics from Now till 2007

II Workshop Italiano sulla Fisica di ATLAS e CMS October 13, 2004 Napoli, Italy Franco Bedeschi INFN-Pisa

The Tevatron
CDF and D0
Current Run II results and expectations for 2007 ... and beyond

Napoli: October 2004

Upgraded Tevatron: Run II

New Main Injector:

 Improve p-bar production

 Recycler ring:

 Improve p-par accumulation

 Napoli: October 2004

TeV Luminosity (current situation)

Peak luminosity

Best > 1.0 x10³² !!!

Delivered 680 pb⁻¹

540 pb⁻¹ on tape

Next data set for analysis

~ 350 - 450 pb⁻¹ > 3-4 x Run 1

Napoli: October 2004

- Shutdown in progress
 Install electron cooling
 FY 2005
 - Continue mixed mode
 - Proton slip stacking
 - > +25% p-bar production acceptance
 - Commission e-cooling by end of FY05
 F. Bedeschi, INFN-Pisa

3/50

Extended Tev goals

Luminosity plan 2002		L _{max} =	= 2-3 x 10 ³²
Goals 2002 - 04 accomplished	Year	Base plan	Design plan
 Goals 2004 ~ 310 - 380 pb⁻¹ Tevatron is performing very well 		luminosity/yr (fb ⁻¹)	Luminosity/yr (fb ⁻¹)
 Key is good recycler performance 	FY02	0.08	0.08
	FY03	0.20	0.22
9 8 Base plan	FY04	0.31	0.38
7 Design plan	FY05	0.39	0.67
$\begin{array}{c} & \\ 5 \\ \hline \\ Base plan \sim no recycler \end{array}$	FY06	0.50	0.89
4 Base plan ~ no recycler	FY07	0.63	1.53
2	FY08	1.14	2.37
1 0 	FY09	1.16	2.42
0 1 2 3 4 5 6 7 8 9 10	Total	4.41	8.56

F. Bedeschi, INFN-Pisa

4/50

Napoli: October 2004

Integrated luminosity profile

Tevatron performance projections much more reliable now:
→ 2 - 4 fb⁻¹ by end of FY07
→ 5 - 10 fb⁻¹ by end of Tevatron operation

Napoli: October 2004

Extended FNAL plan

Fermilab long range plan (FNAL Official schedule: March 5, 2004)

Calend Year	ar	2006	2007			2008			2009		
Toyotro		BTeV	BTeV		BT	eV			BTeV		<mark>BT</mark> eV
Collida	on r	CDF	CDF		CE	DF			CDF		Open
Comue	,1	& D0	& D0		& I	D0			& D0		Open
Neutrino	В	OPEN	OPEN		OP	EN			OPEN		OPEN
Program	MI	MINOS	MINOS		MIN	IOS		MINO	S OPEN		OPEN
Magain	МΤ	TestBeam	TestBeam		TestE	Beam			TestBeam		ТВ
Weson 120	МС	OPEN	OPEN		E90	06#			E906#		E906#
120	ME	OPEN	OPEN		OP	EN			E921*		E921*

Napoli: October 2004

Physics Highlights and Prospects

Will be biased toward CDF results!
Will cover only selection of results
Based on 200 ± 50 pb⁻¹ data sample (until Feb. 13, 2004: start of CDF COT crisis)
Whenever possible will try to show how far we can

Whenever possible will try to show how far we can push the measurements

Tevatron Physics

Access to all aspects of SM

> Jets

- charm/beauty/top
- Vector bosons

Sensitivity to new physics

> Higgs

- > SUSY
- Anything else ?

 Large extra dimensions, Leptoquarks, Technicolor, etc.

NP covered by large backgrounds

Need very good understanding of more frequent phenomena

Napoli: October 2004

F. Bedeschi, INFN-Pisa

10/50

The mother of all backgrounds!
Current description much improved over run 1
New physics in highest energy jets
Quark compositeness changes Et distr.
Bumps in di-jet mass signal NP

More high Et jets due to Tev energy increase
 Study also photons and W/Z + jets

Napoli: October 2004

Jets and pdf's

Tevatron extends pdf coverage to high values of x, Q
Direct sensitivity to gluon pdf
New physics modifies Et or Mjj distributions

Napoli: October 2004

F. Bedeschi, INFN-Pisa

13/50

Inclusive Jet Et

Updated results with 177 pb⁻¹ of data

- Consistent with NLO pQCD with CTEQ6.1
 - No obvious high Et excess
 - Energy scale uncertainty ~ 3% Major systematics

Other similar results with Kt and mid-point clustering

Napoli: October 2004

Di-jet mass

Napoli: October 2004

Di-jet mass

Old '03 result (75 pb⁻¹) used to set limits on jet-jet resonances

Need work on jet corrections to improve limits with higher statistics

Search for New Particles Decaying to Dijets

Napoli: October 2004

yy production

New results (207 pb⁻¹) on γγ production

Data are not consistent with PYTHIA Tune A

Need to rescale normalization
 Models with soft/collinear gluon resummation explain better data

W+Jets

 W + jets production is the background for many signals including top quarks and Higgs bosons
 Significant improvement in agreement with MC

Napoli: October 2004

Only selected topics:
Production x-section
Rare decays: B→μμ
Bs mixing (indirect/direct)
CP violation with 2 body B decays

Triggers

Jpsi

Rare B BBbar

Upsilon

CDF Preliminary

2 Good CDF Muons

with silicon hits

Di-muons

z 10⁶

10⁵

10⁴

Di-Muon Mass

J/ψ: 2.3M

ψ(2S): 290K

Very efficient di-muon triggers span wide range of invariant mass
B physics with J/ψ
Rare B decays
Ψ, Y are important calibration samples for

momentum scale

o. c Y(1S) 10³ Y(2S) Y(3S) 10² **~~~** 10 2 4 6 8 1'0 Di-Muon Mass(GeV) **CDF** Preliminary **Di-Muon Mass** Z Triggers: J/w: 4.0M Jpsi 10 Rare B **BBbar** ψ(2S): 780K Upsilon 10⁵ 2 Good CDF Muons 10⁴ Y(1S) Y(2S) 10^{3} 10² Ż 6 Ŕ 10 Di-Muon Mass(GeV)

F. Bedeschi, INFN-Pisa

Napoli: October 2004

" $b \rightarrow J/\psi + X$ " x-section

Napoli: October 2004

F. Bedeschi, INFN-Pisa

20/50

Rare decays

 \mathbf{P}_{s} : 1 event seen/ 1.05 \pm 0.30 bck expected > 5.8E-7 @ 90% CL (7.5E-7 @ 95% CL) [CDF Run 1: 2.6E-6 @ 95% CL] \mathbf{P}_{d} : 1 event seen/ 1.07 ± 0.31 bck expected

> 1.5E-7 @ 90% CL (1.9E-7 @ 95% CL) [BaBar: 8.3E-8 @ 90% CL]

Napoli: October 2004

21/50

Rare Decays

Sensitive to SUSY

- Bs result combined with D0:
 - BR < 2.7 x 10⁻⁷ @ 90% CL
- \blacktriangleright Better than 1 x 10⁻⁷ by 2007
 - Needs update of analysis selection

Napoli: October 2004

Bs Mixing

• Indirect measurement with $\Delta\Gamma/\Gamma$

- First measurement out this summer
- Major progress this year on direct searches
 - Use more Bs final states
 - Semileptonic included
 - > Opposite side taggers established
 - Finalizing same side taggers
 - > 30% c τ resolution improvement

\clubsuit Expect new relevant limits on Δm_s next winter

Measurement hard but within reach by 2007 and hopefully much sooner!

Napoli: October 2004

Bs States: $\Delta\Gamma$ / Γ

 ${}^{\bigstar} B_S \to J/\psi \ \varphi \ \to \mu^+\mu^- \ K^+K^-$

Heavy state and light state decay with distinct angular distributions and different lifetimes.

- Decay angular distributions
 - 1/4 heavy state3/4 light state
 - Lifetime $\tau_{heavy} \sim 2 \ge \tau_{light}$ $\lambda \Gamma_{S} / \Gamma_{S} = 0.71^{+0.24} \pm 0.01$
- Lifetime difference measures "same" CKM element as ∆m (oscillation frequency)
 Exciting!! Need more data
 ~ 5 % sensitivity by 2007

$$\succ \Delta m_s = 10 \text{ ps}^{-1} \rightarrow \Delta \Gamma_S / \Gamma_S = 7\%$$

Napoli: October 2004

Bs hadronic signals

Channel	Observed events	Luminosity (pb^{-1})	Yield per 250 pb^{-1}	S/B
$B_s \to D_s \pi (D_s \to \phi \pi)$	339 ± 22	264	320	5.7
$B_s \to D_s 3\pi (D_s \to \phi \pi)$	95 ± 17	264	90	1.0
$B_s \to D_s \pi (D_s \to K^* K)$	190 ± 25	240	200	1.3
$B_s \to D_s \pi (D_s \to 3\pi)$	57 ± 11	124	115	1.75

Napoli: October 2004

Channel	Observed events	Luminosity (pb^{-1})	Yield per 250 pb^{-1}	S/B
$B_s \to \ell \nu D_s X(D_s \to \phi \pi)$	2342 ± 66	245	2400	3.5

Napoli: October 2004

$c\tau$ resolution with L00

F. Bedeschi, INFN-Pisa

27/50

Mixing and flavor tag

🛛 🗣 Major	r progress on mixing	CDF Run II Preliminary L ≈ 245 pb ⁻¹	
> Tes	st whole machinery on B	$0.5 \xrightarrow[]{} B I^{+} D^{*}, D^{*} \overline{D^{0}} \pi_{s} (\overline{D^{0}} K^{+} \pi^{*})$	
	Consistent Δm_d values		etry
	Taggers characterized		
> Co	mbined OST $\varepsilon D^2 = 1.6\%$	0	Fit function
	Include correlations		-0.5
► Cu	rrently developing K tag	s both on	0 0.1 0.2 0.3 Proper decay length [cm]
san	ne side and opposite side	e	CDF Run II Preliminary L ≈ 245 pb ⁻¹
$\mathbf{N}^{2}(\mathbf{Q})$		20	$\mathbf{B} \to \mathbf{I}^* \mathbf{D}^*, \mathbf{D}^* \to \mathbf{D}^0 \pi_{\mathbf{s}} (\mathbf{D}^0 \to \mathbf{K}^* \pi)$
ε <mark>D</mark> ² (%)	CDF	DU	
SST	1.04±0.35±0.06	1.00±0.36	0 met
Soft μ	0.698±0.042 +0.051 -0.027	1.00±0.38	-0.2 Fit function
Soft e	0.35±0.05(stat)	-	Total B ^o fraction Total B ^o fraction SST tag
			0 01 02 02

Napoli: October 2004

F. Bedeschi, INFN-Pisa

0.3

Bs Mixing measured by 2007!

29/50

$B \rightarrow hh$

- Several new results based on this sample presented at ICHEP
 - > Branching fractions
 - Integrated CP asymmetries
 - Time dependent CP asymmetries will be next
 Potential to extract γ with accuracy ~ 10°
 - See next pages for expectations

Napoli: October 2004

B→hh

Branching ratios and CP asymmetry

	CDF/180 pb ⁻¹	Babar/200 fb ⁻¹	Belle/140 fb ⁻¹
N(B _d →K⁺π⁻)	509	1600	1030
$\frac{BR(B_{d} \rightarrow \pi^{+}\pi^{-})}{BR(B_{d} \rightarrow K^{+}\pi^{-})}$	0.24±0.06±0.04	0.26±0.036±0.015*	0.24±0.035±0.018*
$A_{CP}(B_{d} \boldsymbol{\rightarrow} K^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -})$	-0.04±0.08±0.01	-0.133±0.03±0.009	-0.088±0.03±0.013

Rare two body decay modes

	CDF/180 pb ⁻¹	PDG 2004	expectations
BR(B _d →K ⁺ K ⁻)	< 0.17*BR(B _d →K⁺π⁻)		
	⇒ < 3.1*	< 0.6	[0.01 - 0.2] [Beneke&Neubert]
BR(B _s →π⁺π ⁻)	< 0.10*BR(B _s →K ⁺ K ⁻)** ⇒ < 3.4*	< 1700	0.42 ± 0.06 [Li et al. hep-ph/0404028] [0.03 - 0.16] [Beneke&Neubert]

Napoli: October 2004

$B \rightarrow hh$ expectations

Electroweak results

Run II:

- Major expectations for M_{top} and M_W
- Currently close or improving Run I results

Napoli: October 2004

$$\begin{split} \mathsf{M}_{\mathsf{W}}(e) &= 80.424 \pm 0.044 \text{ (stat.)} \pm 0.090 \text{ (syst.) GeV} \\ \mathsf{M}_{\mathsf{W}}(\mu) &= 80.419 \pm 0.051 \text{ (stat.)} \pm 0.069 \text{ (syst.) GeV} \\ \textbf{Run II: } \mathsf{M}_{\mathsf{W}} &= \textbf{80.421} \pm \textbf{0.073 GeV} \text{ (to be blessed)} \\ \mathsf{Run I} : \mathsf{M}_{\mathsf{W}} &= 80.433 \pm 0.079 \text{ GeV} \end{split}$$

Napoli: October 2004

W mass systematics

Systematic	Electrons (Run 1b)	Muons (Run 1b)
Lepton Energy Scale and Resolution	70 (80)	30 (87)
Recoil Scale and Resolution	50 (37)	50 (35)
Backgrounds	20 (5)	20 (25) CDF RUN II
Statistics	45 (65)	50 (100) PRELIMINARY
Production and Decay Model	30 (30)	30 (30)
Total	105 (110)	85 (140)

Work in progress on recoil model
Work in progress on e-energy scale (passive material)
Now combined error is 76 MeV (stat+syst)
Expect 50 MeV combined (CDF only) by next year
Goal is ~ 20 - 30 MeV/experiment by end of run II

Napoli: October 2004

Run II W mass expectations for the W \rightarrow e v channel

W mass

- Most systematics scale with luminosity
 - E.g. size of Z control sample
- σ(M_w) ~20-30 MeV/c²/experiment expected using all channels

Integral Luminosity (fb ⁻¹)	Run I (0.1)	2	15
Number of W-> e _V	50K	1M	M 8
Statistical uncertainty	65	14	5
Systematic uncertainty	92	39	17
productio/decay model	47	32	13
backgrounds	5	5	5
Lepton resolution	25	8	4
Energy scale	75	20	10
Total uncertainty	113	41	17

 $dm_H/dm_W \sim 50 \text{ GeV}/25 \text{ MeV}$

Napoli: October 2004

Top pair Cross sections

Napoli: October 2004

•Most x-sections updated with ~200 pb⁻¹ in many different channels

Top Mass (1+jets)

 $M_{top}^{run |l|} = 177.8^{+4.5}_{-5.0}(stat.) \pm 6.2(syst.) = 177.8^{+7.7}_{-8.0}GeV (DLM)$ $M_{top}^{run |l|} = 176.1 \pm 7.3 \text{ GeV/c}^2 (template)$

Run II checks:

 $M_{top} = 179.6 + 6.4_{-6.3} \text{ (stat.)} \pm 6.8 \text{ (syst.)} \text{ GeV/c}^2 \text{ (multivariate template)}$ $M_{top} = 174.9 + 7.1_{-7.7} \text{ (stat.)} \pm 6.5 \text{ (syst.)} \text{ GeV/c}^2 \text{ (template)}$

Napoli: October 2004

Top mass and reach

Run 1

Expect major reduction by next round of conferences

Goal is 2 – 3 GeV/exp. by end of Run II Napoli: October 2004

Run 2

Top quark

How much better can we do in Run II?

Invariant mass from untagged quarks calibrates light q energy scale and gluon radiation (FS)

Integral Luminosity (fb ⁻¹)	Run I (0.1)	2	15
Double b-tag W + jet	5	240	1,800
Statistical uncertainty	4.8	1.7	0.63
Systematic uncertainty	5.3	2.1	1.2
jet scale (light quarks)	4.4	1.8	0.64
jet scale (beauty quarks)	-	0.5	0.19
background	1.3	-	-
gluon radiation	2.6	1.1	0.97
Total uncertainty	7.2	2.7	1.1
Dor ovnorimont			

Similar for di-leptons

Use $Z \rightarrow bb$ to calibrate b-jet energy scale

dm_H/dm_t~ 50 GeV/4 GeV

F. Bedeschi, INFN-Pisa

Napoli: October 2004

Top mass (progress)

Progress using double tags as in TDR

New Physics Searches

Searches for new physics

- Infinite spectrum of possibilities!
- Example1: Squarks & gluinos
- Example2: Chargino-neutralino searches
- Example3: SM and BSM Higgs searches

SUSY

Squark & gluino searches

 $p\overline{p} \to \widetilde{g}\widetilde{g} \to (\overline{q}\widetilde{q})(\overline{q}''\widetilde{q}'') \to \overline{q}(q'\widetilde{\chi}_{1}^{\pm})\overline{q}''(q'''\widetilde{\chi}_{1}^{\pm})$ $\chi_{i}^{0} \qquad \chi_{i}^{0} \qquad \chi_{i}^{0}$

- Look for hadronic decays:
 - Charginos & heavier neutralinos eventually decay to quarks and neutral LPS
- Signature is jets +MET
- Requires accurate study of SM backgrounds
- Run 1 results
- Preliminary run II result from D0

Charginos & Neutralinos

mSUGRA
Neutralino is LSP
GMSB
Gravitino is LSP

► Neutralino (NLSP) → gravitino γ Look for $\gamma\gamma$ + MET + X

Tri-lepton search

DO limit @95% CL: $\geq \chi^{\pm} < 97 \text{ GeV}$ CDF (run II) limit close to being complete Expect updates for 2005 to improve LEP result No competition

before LHC results

Napoli: October 2004

∧ (TeV) F. Bedeschi, INFN-Pisa

46/50

SM Higgs

95% CL limit (162 - 184 pb⁻¹) Need more channels/energy resolution improvement e.g. vvbb

Napoli: October 2004

Higgs search

Sensitivity reevaluated in June 2003

SUSY - Higgs

Napoli: October 2004

Tevatron is (finally!) picking up

Could exceed even best luminosity expectations!

CDF & D0 are working well and delivering a wide range of physics results

~ 400 pb⁻¹ analyzed for winter '05
Expect many interesting new results

50/50

Conclusion (2)

By end of FY2007 will have 2 - 4 fb⁻¹ delivered and possibly 1.5 - 3 analyzed:

Top mass resolution ~ 3 GeV/exp and improving

- ► W mass resolution ~ 25 GeV/exp and improving
- Rare decays in B sector

Limit on Bs $\rightarrow \mu\mu$ in the 10⁻⁸ range

Bs mixing is measured

→ CP in B→hh: measured time evolution with 15 –20 % resolution on asymmetries and improving → sensitive to γ

New particle searches:

- Tevatron leads until LHC turn on
- Will keep improving limits on SM Higgs and other more exotic particles

With luck and a consistent Tevatron performance we may observe hints of the Higgs boson or new physics!

Napoli: October 2004

Napoli: October 2004

Expected Run II Top Quark Studies Accuracy

Measurement	Precision
Top Mass	2-3 GeV/c ²
δσ (ttbar)	<mark>9%</mark>
δσ (II)/ σ(I+j)	12%
δ B(t→Wb)	<mark>2.8%</mark>
$\delta \mathbf{B}(\mathbf{W}_{longitudinal})$	<mark>5.5%</mark>
δV_{tb}	13%
B(t→cγ)	<2.8 X 10 ⁻³
B(t→Zc)	<1.3 X 10 ⁻²

F. Bedeschi, INFN-Pisa

53/50

Search for $H \rightarrow \gamma \gamma$

In the SM Higgs $\rightarrow \gamma\gamma$ has Br~10⁻³ \rightarrow search for SM Higgs decaying to gamma pair is not practical at Tevatron

Many SM extensions allow enhanced gamma pair decay rate largely due to suppressed coupling to fermions → Fermiphobic Higgs

→ Topcolor Higgs

Search strategy: Look for peaks in $\gamma\gamma$ mass spectrum for high P_t isolated γ 's

data = 97.0 bkgd = 68.8 +- 45.8 QCD = 64.0 +- 45.7 DY = 3.0 +- 3.0 γγ = 1.8 +- 0.1

F. Bedeschi, INFN-Pisa

Napoli: October 2004

SUSY search expectations

Old Run II sensitivity estimates consistent with current results

Napoli: October 2004