

- Ottima descrizione della Fisica dalla scala atomica a 10⁻¹⁸ m
- Estensione motivata dallo Hierarchy Problem
 - Planck scale (10¹⁹ GeV) >> EW scale (10² GeV)
 - Le correzioni radiative portano la massa dell'Higgs alla scala più alta, a meno che uno spinto fine tuning dei parametri non dia delle cancellazioni

Possibili soluzioni:

- Supersimmetria
- Little Higgs
- Extra Dimensions
- Technicolor, Modelli Higgsless (non trattati in guesto talk)

h.

 $\frac{1}{2}\lambda^2\Lambda^2$

SUPERSYMMETRY

🖌 fermion

🖌 gaugino

 $M_{SUSY} \sim \mathcal{O}(1)$ TeV.

🖊 boson

gauge boson

 λ^2

norpoli & D. Costanzo

14/10/2004

SUSY: Trigger

- Obiettivo : ridurre i 40 MHz bx rate (~1 GHz pp) \rightarrow O(100 Hz)
- Preservare la massima efficienza di segnale SUSY in canali jets + ETmiss
- Grosso rate QCD: trigger rate su nastro limitato dalla potenza di calcolo HLT

- Punti a limite della regione di scoperta di TeVatron
- R-conserving e R-violating
- Full simulation su segnali SUSY e fondi SM per valutare l'efficienza di trigger
- Efficienza ottimizzata per un rate O(10 Hz)
- Schemi possibili (low-lum):
 - 1 jet con ET > 180 GeV & missing ET > 123 GeV
 - 4 jets con ET > 113 GeV
- Efficienze:
 - 60-70% R-conserving
 - 25-45% R-violating

SUSY: Scoperta

Jets+MET danno la migliore sensibilità

- Tempi limitati non dalla statistica, ma dalla comprensione delle prestazioni dei rivelatori
 - Calibrazioni della scala di energia dei jet
 - Calibrazioni della missing energy
- Occorrono grandi quantità di dati W,Z,ttbar per una corretta stima dei fondi
- Scoperta possibile fino a masse di ~q e ~g dell'ordine di 2.5-3 TeV con 300 fb⁻¹

Childrooll & D. Costanzo

14/10/2004

II Workshop Italiano sulla Fisica a CMS e ATLAS

- Scegliere alcuni punti di benchmark nello spazio dei parametri mSUGRA
- Identificare catene di decadimento in modo esclusivo
- Se una catena di almeno 3 two-body-decays può essere isolata, le masse e gli impulsi delle particelle possono essere misurate.
 - Edge e soglie nelle distribuzioni di massa invariante funzioni delle masse delle particelle

- ATLAS punto SPS1 (m_0 =100, $m_{1/2}$ =250, tan β =10, A_0 =-100, μ >0)
- ATLFAST (fast simulation)

- Le incertezze sistematiche sulla scala di energia di jet e leptoni dominano sulle incertezze statistiche
 - Sfruttare grande statistica di Z→II, W→jj per le calibrazioni
 - Lepton scale:
 - Z→II (2 ev/s a 10³³), constraint sulla massa di Z
 - LHC goal: 0.1%
 - Sistematici dominanti:
 - Z→ee conoscenza del materiale nella parte interna del detector (goal 1%), modelling del bremsstrahlung (goal 10%)
 - $Z \rightarrow \mu \mu$ mapping del campo magnetico, allineamenti
 - Jet scale:
 - $Z(\rightarrow II)$ +jet, richiedendo $p_T(jet) = p_T(Z)$
 - W→jj, in eventi tt→bWbW, richiedendo m_{ii}=m_W
 - LHC goal: 1%
 - Sistematici:
 - Final State Radiation, cono per la ricostruzione del jet

Chiorboll & D. Costanzo

14/10/2004

II Workshop Italiano sulla Fisica a CMS e ATLAS

 \tilde{q}_L

q

Full simulation

- Simulazione completa (Geant3) del rivelatore (ATLAS)
- 100K eventi simulati, 5.3fb⁻¹
- Massa invariante (Flavor subtracted)
- Edge atteso a 100.3GeV (misurato 100.2 ±1.2GeV)

Massa Invariante

 χ^0_2

Chierooli & D. Costanzo

14/10/2004

II Work

400

800

600

m(ybb) (GeV)

 χ_{L}

XR

- Naturale se inglobata in una simmetria più ampia
- Higgs pseudo-Goldstone di una simmetria globale
- Diversi modelli
 - Littlest Higgs:
 - $SU(5) \rightarrow SO(5)$
 - $[SU(2)\otimes U(1)]\otimes [SU(2)\otimes U(1)] \rightarrow SU(2)\otimes U(1)$

ca a CMS e ATLAS

Little Higgs - T Quark Search

- Parametri: M_T , λ_1/λ_2
- ATLAS Fast simulation (hep-ph/0402037)
- Plot per 300 fb⁻¹
- Limite di scoperta 5 σ per $\lambda_1/\lambda_2 = 1$ (2) e 300 fb⁻¹

II Workshop Italiano sulla Fisica a CMS e ATLAS

14/10/2004

Chilorooli & D. Costanzo

Little Higgs - Heavy Gauge Bosons

 10^{2}

10

- Parametri: M, cot θ (per Z_H), tan θ ' (per A_H)
- Scoperta:
 - $A_{\rm H}, Z_{\rm H} \rightarrow ee, \mu\mu$
 - $W_H \rightarrow e\nu, \mu\nu$
 - Fino a 5 TeV, tranne per piccoli cot θ (W_H,Z_H) e per tan θ'≈1.3
 - Dalla $\sigma \Rightarrow$ misura di θ
- Canali specifici per LH:
 - $Z_H \rightarrow Zh \rightarrow llbb$
 - $W_{\rm H} \rightarrow Wh \rightarrow l\nu bb$
 - $W_H/Z_H \rightarrow W/Z h \rightarrow qq\gamma\gamma$

Extra Dimensions

Extra Dimensions

- Hierarchy problem risolto in modo "geometrico":
 - Interazione gravitazionale così debole solo perché "diluita" in n dimensioni
 - Non abbiamo mai visto le dimensioni extra perché esistono a scala R < 1 mm
 - Verifiche dirette dell'interazione gravitazionale fino a R ~ 1mm

- Geometria "flat"
- Gravità nel bulk, va come R⁻⁽²⁺ⁿ⁾ per R < R₀ ed è forte à scala M_D (~ TeV)
- M_Dⁿ⁺² R₀^d = M_{Planck} → R₀ ~ 1 mm (n=2) or 10 fm (n=6) (Large Extra Dimensions)
- SM particles nel "brane" (3+1 dimensioni)
- Eccitazioni Kaluza-Klein del gravitone di bassa energia. Coupling con le particelle SM debole e universale. Grande numero di stati (~continuo).

TeV⁻¹ sized Extra Dimensions

Una ED

- bosoni di gauge bosons nel bulk
- Fermioni sulla 4D brane ad uno/due punti fissi nella 5^a dimensione (M1/M2 models).
- KK spectra for $Z^{(k)}, W^{(k)}$: $m_k^2 = m_0^2 + k^2 M_C^2$
 - EW data: M_C > 4 TeV
 - Solo la prima risonanza osservabile
- Scoperta con ee, $\mu\mu$, ev, $\mu\nu$
- Misure di precisione con elettroni

$\Delta E/E$	2 TeV e	$2 \text{ TeV } \mu$
ATLAS	0.7 %	20 %
CMS	0.6 %	6%

- Sensitivity to peak (100 fb⁻¹, S/√B>5, S>10):
 5.8 TeV
- Reach (with interference in tail, el., 100 fb⁻¹);
 9.5 TeV
- Ultimate (with interference, el.+muons, 300 fb⁻¹):
 13.5 TeV

ERKELEY LAP

<u>N.B.: syst. uncertainties are</u> not taken into account

- Perfect alignment, calibration, B field, etc.;
- Background shape, functional forms of pdf's, mass resolution perfectly known.

Costanzo

14/10/2004

AS

RS – Randall Sundrum

- 2 brane (TeV brane e Plank brane) connesse da una 5ª dimensione a geometria curva
- Gravità nel bulk
- Gravity scale Λ_π ~ M_{Pl} e^{-krπ} ~ TeV se kr ~ 12, scala dei processi sulla TeVbrane (y = πR)
- Curvatura 0.01 < c=k/M_{Pl} < 0.1</p>
- Eccitazioni KK del gravitone: $M_n = kx_n e^{-kr\pi}$ con $J_1(x_n) = 0$, $M_1 = 0.83$ c Λ_{π}
- Coupling degli stati KK ~ 1/ Λ_{π}

RS - Gravitone

100 fb⁻¹

2000

100 fb⁻¹

2100

5000

Mass (Ge

RS - Radion

Conclusioni

• LHC macchina ideale per vedere nuova fisica

Supersimmetria

- scoperta possibile in ampie regioni dello spazio dei parametri
- scoperta possibile con bassa luminosità integrata
- possibilità di misurare le masse e di ricostruire i picchi in certe regioni dello spazio dei parametri
- più modelli presi in esame

Little Higgs

- Scoperta possibile per T, W_H, Z_H (dopo diversi anni di presa dati)
- Possibilità di osservare i decadimenti specifici del modello per W_H e Z_H

Extra-Dimensions

- Diversi modelli presi in esame (ADD, TeV-1, RS)
- Possibilità di scoperta fino ad alte scale (masse)
- Osservazione diretta di gravitoni, bosoni pesanti, radioni

Heavy Higgs

- Less constrained in mass
- $qq \rightarrow \phi^{++}\phi^{--} \rightarrow 4l$ (too small cross section)
- $qq \rightarrow q'q' \phi^{++} \rightarrow q'q' W^+ W^+ \rightarrow q'q'$ $\parallel_{\mathcal{V}}$
- Coupling φWW depends on v²
 (VEV of Higgs triplet)
- From EW data v' < 15 MeV
- For m₆ = 1000 (1500) GeV discovery requires v' > 29(54) MeV
- Φ^+ and Φ^0 probably even more difficult

Effetti di saturazione in ECAL

- Elettroni molto energetici: saturazione nell'elettronica di ECAL
- Sviluppo di un algoritmo di correzione

Black Holes

- Se √s > M_{Pl} (gravity scale) è possibile la produzione di black holes.
- $\sigma \sim \pi R_s^2$ (grande, ma suoppressa dalla parton pdf)
 - $\sigma_{tot} = 0.5 \text{ nb} (M_p = 2 \text{ TeV}, \delta=7)$
 - $\sigma_{tot} = 120 \text{ fb} (M_p = 6 \text{ TeV}, \delta=3)$
- Incertezze per la mancanza di una quantum gravity theory
- Decadimenti per Hawking radiation con T ~ 100 GeV (1015 K)
- Molteplicità ~ 10, tutte le particelle con m << T prodotte con uguale probabilità

Production cross sections

 $\sigma(M_{\rm BH}^2) \approx \pi R_{\rm BH}^2$

14/10/2004

II Workshop Italiano sulla Fisica a CMS e ATLAS

Black Holes

M (GeV)

M_P= 3 TeV

 $M_{P} = 5 \text{ TeV}$

- Tag event with at least 4 jets + photon or electron → SM background small
- M_{BH} reconstructed for each event
- Higgs Discovery from BH decays:
 - High production rate of BH + democratic decay of BH: MP ~ 2 TeV and n=3 $\rightarrow \sigma_{BH}$ = 450 pb \rightarrow 1 light Higgs every 3 s

II Workshop Italiano sulla Fisica a CMS e ATLAS

~τ-NLSP

D. Costanzo

- uso del muon system per misurare il time-of-flight di leptoni pesanti
- Massa dello ~τ misurabile in range 90-700 GeV per 100 fb⁻¹

14/10/2004

Large ED: indirect searches

- Lo scambio virtuale di gravitoni modifica la σ di Drell-Yan e le asimmetrie
- Divergenza UV, mancata conoscenza della teoria completa uso di un cut-off M_s

 Una variazione di una fattore 2 del background muove le curve di qualche decina di GeV

II Workshop Italiano sulla Fisica a CMS e ATLAS

14/10/2004

Chiefond & D. Costanzo