SUSY and Beyond the Standard Model a CMS e ATLAS

Massimiliano Chiorboli (Università di Catania)

Davide Costanzo (Berkeley National Laboratory)

Necessità di andare oltre lo SM

- Ottima descrizione della Fisica dalla scala atomica a 10⁻¹⁸ m
- Estensione motivata dallo Hierarchy Problem
 - Planck scale (10¹⁹ GeV) >> EW scale (10² GeV)
 - Le correzioni radiative portano la massa dell'Higgs alla scala più alta, a meno che uno spinto fine tuning dei parametri non dia delle cancellazioni
 - Possibili soluzioni:
 - Supersimmetria
 - Little Higgs
 - Extra Dimensions
 - Technicolor, Modelli Higgsless (non trattati in guesto talk)

SUPERSYMMETRY

Supersimmetria (SUSY)

- Raddoppia i gradi di libertà
- MSSM (~q, ~g, ~l, ~χ)
- Modelli (mSUGRA, GMSB, ecc.)
- Fenomenologia (mSUGRA):

- high-pT leptons
- high-pT jets
- Missing ET

14/10/2004

SUSY: Trigger

- Obiettivo : ridurre i 40 MHz bx rate (~1 GHz pp) → O(100 Hz)
- Preservare la massima efficienza di segnale SUSY in canali jets + ETmiss
- Grosso rate QCD: trigger rate su nastro limitato dalla potenza di calcolo HLT
 - Studio di ottimizzazione (CMS)
 - Punti a limite della regione di scoperta di TeVatron
 - R-conserving e R-violating
 - Full simulation su segnali SUSY e fondi SM per valutare l'efficienza di trigger
 - Efficienza ottimizzata per un rate O(10 Hz)
 - Schemi possibili (low-lum):
 - 1 jet con ET > 180 GeV & missing ET > 123 GeV
 - 4 jets con ET > 113 GeV
 - Efficienze:
 - 60-70% R-conserving
 - 25-45% R-violating

SUSY: Scoperta

- Jets+MET danno la migliore sensibilità
- Tempi limitati non dalla statistica, ma dalla comprensione delle prestazioni dei rivelatori
 - Calibrazioni della scala di energia dei jet
 - Calibrazioni della missing energy
- Occorrono grandi quantità di dati W,Z,ttbar per una corretta stima dei fondi
- Scoperta possibile fino a masse di ~q e ~g dell'ordine di 2.5-3 TeV con 300 fb-1

FAST SIMULATION

SUSY scoperta

Analisi di supporto basate su leptoni

- trigger più efficiente
- migliore soppressione del fondo

SUSY Misura dei parametri

- Scegliere alcuni punti di benchmark nello spazio dei parametri mSUGRA
- Identificare catene di decadimento in modo esclusivo
- Se una catena di almeno 3 two-body-decays può essere isolata, le masse e gli impulsi delle particelle possono essere misurate.
 - Edge e soglie nelle distribuzioni di massa invariante funzioni delle masse delle particelle

SUSY Misura dei Parametri

- ATLAS punto SPS1 ($m_0=100$, $m_{1/2}=250$, $tan\beta=10$, $A_0=-100$, $\mu>0$)
- ATLFAST (fast simulation)

- Le incertezze sistematiche sulla scala di energia di jet e leptoni dominano sulle incertezze statistiche
 - Sfruttare grande statistica di Z→II, W→jj per le calibrazionì
 - Lepton scale:
 - Z→II (2 ev/s a 10³³), constraint sulla massa di Z
 - LHC goal: 0.1%
 - Sistematici dominanti:
 - Z→ee conoscenza del materiale nella parte interna del detector (goal 1%), modelling del bremsstrahlung (goal 10%)
 - Z→μμ mapping del campo magnetico, allineamenti
 - Jet scale:
 - Z(→II)+jet, richiedendo p_T(jet) = p_T(Z)
 - W→jj, in eventi tt→bWbW, richiedendo m_{ii}=m_W
 - LHC goal: 1%
 - Sistematici:
 - Final State Radiation, cono per la ricostruzione del jet

Full simulation

- Simulazione completa (Geant3) del rivelatore (ATLAS)
- 100K eventi simulati, 5.3fb⁻¹
- Massa invariante (Flavor subtracted)
- Edge atteso a 100.3GeV (misurato 100.2 ±1.2GeV)

Ricostruzione delle S-particelle

 $= \left(1 + \frac{M_{\widetilde{\chi}_1^0}}{M_{\ell^+\ell^-}}\right) \vec{p}_{\ell^+\ell^-}$

- Ricostruzioni possibili già a 1-10 fb-1
- Incertezze statistiche << 1% con 300 for</p>
- Incertezze principali: energy scale e M(χ₁⁰)

Little Higgs

- Idea: cancellazione tra stati con uguale spin
- Naturale se inglobata in una simmetria più ampia
- Higgs pseudo-Goldstone di una simmetria globale
- Diversi modelli
 - Littlest Higgs:
 - \circ SU(5) \rightarrow SO(5)
 - [SU(2)⊗U(1)]⊗[SU(2)⊗U(1)]→ SU(2)⊗U(1

SUSY: bosons

Little Higgs: gauge bosons

cancellation

new gauge bosons

new quarks

quarks

 $W, Z, B \leftrightarrow W_H, Z_H, B_H; \quad t \leftrightarrow T; \quad H \leftrightarrow \Phi.$

Little Higgs - T Quark Search

- Parametri: M_T , λ_1/λ_2
- ATLAS Fast simulation (hep-ph/0402037)
- Plot per 300 fb⁻¹
- Limite di scoperta 5σ per $\lambda_1/\lambda_2 = 1$ (2) e 300 fb⁻¹

T→ht→bblvb

 $M_T < 2000 (2500) \text{ GeV}$

 4σ for $M_T = 1000$ GeV 3c for W WILLIAM

Little Higgs - Heavy Gauge Bosons

- Parametri: M, cot θ (per Z_H), tan θ ' (per A_H)
- Scoperta:
 - $A_H, Z_H \rightarrow ee, \mu\mu$
 - $W_H \rightarrow ev$, μv
 - Fino a 5 TeV, tranne per piccoli cot θ (W_H,Z_H) e per tan θ'≈1.3
 - Dalla $\sigma \Rightarrow$ misura di θ
- Canali specifici per LH:
 - \bullet $Z_H \rightarrow Zh \rightarrow llbb$
 - $W_H \rightarrow Wh \rightarrow l\nu bb$

liano sulla F

Extra Dimensions

Extra Dimensions

- Hierarchy problem risolto in modo "geometrico":
 - Interazione gravitazionale così debole solo perché "diluita" in ni dimensioni
 - Non abbiamo mai visto le dimensioni extra perché esistono a scala R
 1 mm
 - Verifiche dirette dell'interazione gravitazionale fino a R ~ 1mm

- Molti modelli. LHC-friendly:
 - ADD (Arkani-Hamed Dimopoulos Dvali)
 - TeV-1 sized ED
 - RS (Randall Sundrum)

ADD

- n extra-dimension di size TeV⁻¹<<R₀<0.2 mm (n=1 escluso, n=2 quasi escluso)
- Geometria "flat"
- Gravità nel bulk, va come R⁻⁽²⁺ⁿ⁾ per R < R₀ ed è forte à scala M_D (~
 TeV)
- M_Dⁿ⁺² R₀^d = M_{Planck} → R₀ ~ 1 mm (n=2) or 10 fm (n=6) (Large Extra Dimensions)
- SM particles nel "brane" (3+1 dimensioni)
- Eccitazioni Kaluza-Klein del gravitone di bassa energia. Coupling con le particelle SM debole e universale. Grande numero di stati (~continuo).

Each couples to the SM field with a strength

Large extra dimension: direct searches

Produzione diretta di gravitoni KK

$$\left. \begin{array}{l} \overline{q}q \to gG^{(k)}, \gamma G^{(k)} \\ qg \to qG^{(k)} \\ gg \to gG^{(k)} \end{array} \right\} \text{ jets } + \cancel{E}_T, \ \gamma + \cancel{E}_T$$

LEP+Tevatron+Hera limits \sim 1.4/0.6 TeV (δ =2/6)

ATLAS search (L. Vacavant and I. Hinchliffe, J. Phys. G27, 1839)

δ	M_D^{max} (TeV)	M_D^{max} (TeV)
	LL, 30 fb $^{-1}$	$HL, 100 \text{ fb}^{-1}$
2	7.7	9.1
3	6.2	7.0
4	5.2	6.0

TeV-1 sized Extra Dimensions

- Una ED
 - bosoni di gauge bosons nel bulk
 - Fermioni sulla 4D brane ad uno/due punti fissi nella 5^a dimensione (M1/M2 models).
- KK spectra for $Z^{(k)}, W^{(k)}$: $m_k^2 = m_0^2 + k^2 M_C^2$
 - EW data: M_C > 4 TeV
 - Solo la prima risonanza osservabile
- Scoperta con ee, μμ, ev, μν
- Misure di precisione con elettroni

ΔE/E	2 TeV e	2 TeV μ
ATLAS	0.7 %	20 %
CMS	0.6 %	6%

- Sensitivity to peak (100 fb⁻¹, S/ \sqrt{B} >5, S>10):
 - 5.8 TeV
- Reach (with interference in tail, el., 100 fb-1);
 - 9.5 TeV
- Ultimate (with interference, el.+muons, 300 fb⁻¹):
 - 13.5 TeV

Altri modelli di Z pesanti

- Studio CMS per Z' generico
- $Z' \rightarrow \mu^+ \mu^-$, BR(6-8%)
- Z_{SSM} , Z_{ψ} , Z_{η} , Z_{χ} , Z_{LRM} , Z_{ALRM}
- Limiti sulla massa
 - Attuale: 600-800 GeV
 - Previsto per LHC start-up: 1 TeV

N.B.: syst. uncertainties are not taken into account

- Perfect alignment, calibration, B field, etc.;
- Background shape, functional forms of pdf's, mass resolution perfectly known.

RS - Randall Sundrum

- 2 brane (TeV brane e Plank brane) connesse da una 5ª dimensione a geometria curva
- Gravità nel bulk
- Gravity scale $\Lambda_{\pi} \sim M_{Pl} e^{-kr\pi} \sim TeV$ se kr ~ 12, scala dei processi sulla TeV-brane (y = πR)
- Curvatura 0.01 < c=k/M_{Pl} < 0.1
- Eccitazioni KK del gravitone: $M_n = kx_n e^{-kr\pi}$ con $J_1(x_n) = 0$, $M_1 = 0.83$ c M_2
- Coupling degli stati KK ~ 1/ Λ_{π}

RS - Gravitone

14/10/2004

- Canali di scoperta: G→ee,μμ,γγ
- Regione di interesse totalmente coperta con 100 fb⁻¹
- Possibilità di misuare i parametri da M, Γ e σ
- Misura dello spin in un'ampia regione (end-caps needed!)
 - θ* angolo tra il fascio e il leptone nel centro di massa del dileptone

RS - Radion

 Scalare che rappresenta fluttuazioni nella metrica della 5° dimensione

1.05 excluded

- Possibilmente più leggero di G⁽¹⁾
- Può mixare con l'Higgs: ξ
- Higgs-like couplings

 $\phi \rightarrow hh \rightarrow \gamma\gamma bb$

(S=17 ev., B=6.9 ev.)

γγ]]

γγСС

γybb

300 350 400 450 500 550 600

φ→hh→2γ+2b, m_a=300 GeV/c², m_b=125 GeV/c²

with yyjj, yycc, yybb irreduc, bkgs and

solid contour : no systematics

1.5 th. excluded

assuming 40 % of reducible / total bkg

dashed contour : with systematics

th. excluded

CMS, 30 fb⁻¹, 5σ discovery contour

Significance 5 for 250<M_{vbl}<350 GeV/c²

Parametri: ξ, m_b, m_H, Λ_b

excluded

-0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8

 $M_{\phi} = 300 \text{ GeV/c}^2, m_{H} = 125 \text{ GeV/c}^2$

 $\xi = -1/3$, $\Lambda_{\phi} = 1$ TeV

Scan in (ξ, Λ_{ϕ}) plane

γγbb: ampia regione nel piano (Λ,ξ) ττbb: conferma

bbbb; accurata conoscenza de bkg (< 0.1%)

Conclusioni

- LHC macchina ideale per vedere nuova fisica
- Supersimmetria
 - scoperta possibile in ampie regioni dello spazio dei parametri
 - scoperta possibile con bassa luminosità integrata
 - possibilità di misurare le masse e di ricostruire i picchi in certe regioni dello spazio dei parametri
 - più modelli presi in esame

Little Higgs

- Scoperta possibile per T, W_H, Z_H (dopo diversi anni di presa dati)
- Possibilità di osservare i decadimenti specifici del modello per W_H e Z_H

Extra-Dimensions

- Diversi modelli presi in esame (ADD, TeV-1, RS)
- Possibilità di scoperta fino ad alte scale (masse)
- Osservazione diretta di gravitoni, bosoni pesanti, radioni

Additional slides

Heavy Higgs

- Less constrained in mass
- $qq \rightarrow \phi^{++}\phi^{--} \rightarrow 4l$ (too small cross section)
- $qq \rightarrow q'q'\phi^{++} \rightarrow q'q'W^{+}W^{+} \rightarrow q'q'$ ||V|
- Coupling φWW depends on v' (VEV of Higgs triplet)
- From EW data v' < 15 MeV
- For $m_{\phi} = 1000 (1500) \text{ GeV}$ discovery requires v' > 29(54)MeV
- Φ⁺ and Φ⁰ probably even more difficult

Effetti di saturazione in ECAL

 Elettroni molto energetici: saturazione nell'elettronica di ECAL

Sviluppo di un algoritmo di correzione

5x5 crystals

Idea for correction: Correlation between Red₅=E₉-E₄ and E₁

Black Holes

- Se √s > M_{Pl} (gravity scale) è possibile la produzione di black holes.
- $\sigma \sim \pi R_s^2$ (grande, ma suoppressa dalla parton pdf)
 - $\sigma_{tot} = 0.5 \text{ nb } (M_p = 2 \text{ TeV}, \delta = 7)$
 - $\sigma_{tot} = 120 \text{ fb } (M_p = 6 \text{ TeV}, \delta = 3)$
- Incertezze per la mancanza di una quantum gravity theory
- Decadimenti per Hawking radiation con T ~ 100 GeV (4015 K)
- Molteplicità ~ 10, tutte le particelle con re << T prodotte con uguale probabilità

Production cross sections

 $\sigma(M_{
m BH}^2) pprox \pi R_{
m BH}^2$

Black Holes

- BH detection:
 - Tag event with at least 4 jets + photon or electron → SM background small
 - M_{BH} reconstructed for each event
- Higgs Discovery from BH decays:
 - High production rate of BH + democratic decay of BH: MP ~ 2 TeV and n=3 $\rightarrow \sigma_{BH}$ = 450 pb \rightarrow 1 light Higgs every 3 s

GMSB

~τ-NLSP

- uso del muon system per misurare il time-of-flight di leptoni pesanti
- Massa dello ~τ misurabile in range 90-700 GeV per 100 fb⁻¹

~χ-NLSP

- Sciami elettromagnetici non puntati al vertice
- Per grandi cτ: sciami elettromagnetici nel muon system

Large ED: indirect searches

- Lo scambio virtuale di gravitoni modifica la σ di Drell-Yan e le asimmetrie
- Divergenza UV, mancata conoscenza della teoria completa uso di un cut-off M_S

 Una variazione di una fattore 2 del background muove le curve di qualche decina di GeV

