Selezione di eventi di beauty e tau con ATLAS e CMS

Susanna Cucciarelli
(CERN)
Carlo Schiavi
(INFN Genova)
Outline

♦ Introduzione
♦ Ricostruzione di tracce e vertici (prestazioni)
♦ Strategie di trigger
♦ Identificazione di adroni b (HLT/offline/applicazioni)
♦ Identificazione di leptoni tau (HLT/offline/applicazioni)
♦ Conclusioni
Motivazioni

Fisica del b ... ma soprattutto ricerca di nuova fisica (Higgs, Susy)
Il bosone di Higgs decade preferenzialmente nei fermioni piu' pesanti accessibili

- H->bb Modello Standard
- canali di decadimento in tau importanti per Higgs Susy

Cosa ci aspettiamo dopo 3 o 1 anni di presa dati?
I sistemi traccianti

CMS e ATLAS sono rivelatori “general purpoase”

=> massima copertura dell'angolo solido

- Struttura a strati concentrici copertura in η fino a 2.5
- Rivelatore di pixel piu' vicino al punto di interazione
- Rivelatori a microstrip di silicio interno e rivelatori esterni
Rivelatori a Pixel

- Massimo numero di canali \(8.2 \times 10^7 \) e \(6.6 \times 10^7 \)
- Massima risoluzione spaziale
 - \(7 \, (r\phi) \) and \(70 \, (z) \) \(\mu m \) e
 - \(10 \, (r\phi) \) and \(15 \, (z) \) \(\mu m \)
- Misura della posizione tridimensionale

3 b layer + 2 dischi

3 b layer + 3 dischi

Dimensioni dei pixel
- \(50 \times 400 \, \mu m^2 \) e \(100 \times 150 \, \mu m^2 \)
- Raggio interno 5.05 cm e 4.3 cm
- Lettura 7 bit ToT e 8 bit
- Occupancy \(10^4 \) alla luminosità

Secondo WS sulla fisica di ATLAS e CMS – Napoli 13-15 ottobre 2004
Rivelatori a Pixel: start up

Forse uno “staged” scenario e’ previsto nel primo periodo di presa dati:

- ATLAS => 2 barrel layer + 2 dischi (layer intermedio staged)
- CMS => 2 barrel layer + 2 dischi (layer esterno staged)

Effetti dello staging sul b-tagging studiati da entrambi gli esperimenti

<table>
<thead>
<tr>
<th>R(2layer/3layer)</th>
<th>ttH/tt</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D $\epsilon_b = 50%$</td>
<td>0.62</td>
<td>0.8</td>
</tr>
<tr>
<td>2D $\epsilon_b = 60%$</td>
<td>0.68</td>
<td>0.85</td>
</tr>
<tr>
<td>3D $\epsilon_b = 50%$</td>
<td>0.58</td>
<td>0.8</td>
</tr>
<tr>
<td>3D $\epsilon_b = 60%$</td>
<td>0.68</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Prestazioni ridotte di un fattore 0.6-0.7 nel canale ttH/tt e 0.8-0.85 nel canale WH a bassa luminosita’

Prestazioni ridotte di un fattore 0.40 ($\epsilon_b=60\%$), 0.25 ($\epsilon_b=50\%$) per jet bb a bassa luminosita’

Secondo WS sulla fisica di ATLAS e CMS – Napoli 13-15 ottobre 2004
Rivelatori a micro-strip e esterni

CMS: Tracker Internal Barrel&Disks e Tracker Outer Barrel & Tracker EndCap tutte strip di silicio

ATLAS: Silicon Chamber Tracker strip di silicio e Transition Radiation Tracker
Materiale e Prestazioni

CMS => il tracker è interamente fatto di microstrip (contributo al materiale dovuto cavi, elettronica, cooling)

Punti per traccia
Ricostruzione di tracce

- Allineamento perfetto
- Singoli μ => eff $\sim 100\%$
- Singoli π => eff $\sim 90\%$
- Jet => efficienza $\sim 98\%$
- PileUp non degrada significativamente le prestazioni

Diversi tagli di qualità delle tracce
Fake rate da 20% a 0.05 per mille
Parametri delle tracce

$\eta=1$	$\sigma(d_0)$	$\sigma(z_0)$	$\sigma(p_T)/p_T$
ATLAS | 15 μm | 95 μm | 1%
CMS | 20 μm | 40 μm | 2%

Diverse dimensioni dei pixel

$H\rightarrow uu$ (120 GeV)

Singoli μ

Diversi bin in p_T 1-2, 2-5, 5-10 e >50 GeV

Secondo WS sulla fisica di ATLAS e CMS – Napoli 13-15 ottobre 2004
Permette di vincolare la ricostruzione completa di tracce all'evento di segnale
=> rigetta il PileUp e velocizza la ricostruzione online

- CMS ricostruisce “pixel track” e da queste ricostruisce la posizione in z del PV

- ATLAS: due algoritmi per la z del VP:
direttamente dagli hit estrapolando coppie di hit vicine in ϕ
ricostruisce tracce con coppie o triplette di hit

Bassa luminosità’ solo informazioni dei pixel
risoluzione spaziale ~50µm
Vertici Secondari

- **Vertex Finding:**
 efficienza dipende dal parametro delle tracce appartenenti al vertice

- **Vertex Fitting:** a partire da un set di tracce appartenenti allo stesso vertice calcolarne la posizione e 'costringere' i parametri delle tracce al vertice.

 Metodo iterativo basato sul χ^2 con pesi assegnati alle tracce

 - **Core:** 18 μm
 - **Tail:** 59 μm
Strategie di trigger

Bunch Crossing
40MHz

L1
75 kHz

L2
2 kHz

Event Filter/Processor Farms
100 Hz

ATLAS: 1 livello hardware + 2 software => piu' flessibilita' rispetto alle soglie di L1
CMS: 1 livello harware + 1 livello software => piu' flessibilita' nel passaggio L1-rate finale

Secondo WS sulla fisica di ATLAS e CMS – Napoli 13-15 ottobre 2004 - 13 -
CMS utilizza essenzialmente gli algoritmi di ricostruzione offline sviluppati nel framework ORCA velocizzando i tempi di processamento degli eventi con
=> Ricostruzione “condizionata”
(arrestare la ricostruzione di tracce dopo un certo numero di hit)
=> Ricostruzione parziale
(definire una regione del Tracker entro cui ricostruire le tracce)

ATLAS ha sviluppato un framework dedicato per la selezione L2 in grado di gestire ristrette porzioni dell'evento (Region Of Interest)
Gli algoritmi al livello di Event Filter sono per quanto possibile gli stessi del framework di ricostruzione offline ATHENA.
L'evento è' processato in step successivi e puo' essere rigettato ad ogni step
=> ottimizzazione del tempo di CPU

Entrambi gli esperimenti hanno strategie di trigger inclusivi ed esclusivi
Selezione di \(b \) and tau

Selezione inclusiva di stati finali con quark \(b \):
- Lunga vita media (~1.2 ps, \(c\tau \sim 470 \mu m \))
- Jet con elevata molteplicità carica
- Jet contenenti leptoni ad alto impulso trasverso

Selezione inclusiva di stati finali con leptoni \(\tau \):
- Jet collimati a bassa molteplicità (1 o 3 tracce cariche)
- Energia mancante
- Vita media \(\sim 0.3 \) ps and \(c\tau \sim 90 \mu m \)
- Pioni

Un confronto diretto delle prestazioni non è sempre possibile
ATLAS: DAQ&Physics TDR
CMS: DAQ TDR, Physics-TDR e' in preparazione..
ATLAS studia gli algoritmi di b-Tagging principalmente su eventi con produzione di WH, H→bb
CMS utilizza principalmente eventi QCD con produzione di 2 jet b

ATLAS Barrel Inner Detector
H→bb

Low luminosity

Di-jet bb, $E_T = 100$ GeV
+ high luminosity pile-up
b-Tagging: parametro d'impatto

Per un adrone b di 35 GeV => lunghezza di decadimento ~3mm
Principale peculiarità: tracce e vertici distanti dal vertice primario

Metodo basato solo sulla misura del parametro di impatto:
Si richiede un numero minimo di tracce per jet con una significance \(S = d_0 / \sigma(d_0) \)
sopra una soglia
Parametro di impatto 2D o 3 D

Molto semplice
Non necessita di particolari calibrazioni
=> particolarmente adatto per selezione online
b-Tagging: parametro d'impatto

Cosa possiamo ottenere utilizzando il “minimo” delle informazioni dal sistema tracciante?

Solo con le informazioni dei pixel $\sigma(d0)$: ATLAS $\sim 60 \, \mu m$ CMS $\sim 80 \, \mu m$ per tracce ad alto p_T

\Rightarrow CMS-Pixel braccio di leva più corto e dimensioni dei pixel in $r\phi$ maggiori, con 3 pixel hit + 1 silicon + Kalman Filter risoluzione confrontabile con ATLAS Pixel+SCT (sample diversi!)
b-Tagging: online/offline

Jet bb+PileUp

WH, H->bb

A 50% di b-eff la reiezione di quark leggeri:
ATLAS ~ 10 online ~150 offline bassa luminosita'
CMS 50-25 (η) ET=100GeV alta luminosita'
ATLAS: prestazioni peggiori da offline a online, ma si tratta di LV2 trigger
dovrebbe migliorare integrato con l'Event Filter
CMS: prestazioni on/off line confrontabili

Secondo WS sulla fisica di ATLAS e CMS – Napoli 13-15 ottobre 2004
b-Tagging: approccio probabilistico

OFFLINE: tracciamento completo e non stretti vincoli di tempo di CPU

Il potere discriminante del parametro di impatto può essere meglio utilizzato con un approccio probabilistico: dalla distribuzione della significance si calcola la probabilità che la traccia venga dal vertice primario. Le probabilità di traccia vengono combinate statisticamente a formare un probabilità per il jet:

\[
P_{\text{jet}} = \prod \cdot \sum_{j=0}^{N-1} \frac{(-\ln \Pi)^j}{j!}
\]

ATLAS considera il rapporto \(P_{\text{traccia}} = \frac{P_b(S)}{P_u(S)} \)

CMS considera \(P_{\text{traccia}} = P_u(S) \)

Le prestazioni dipendono molto dalla calibrazione: tipo di funzioni e tipo di eventi utilizzati.

Secondo WS sulla fisica di ATLAS e CMS – Napoli 13-15 ottobre 2004
Reiezione di quark leggeri per
\[\varepsilon(WH, H\rightarrow bb) = 60\% \text{ con parametro d'impatto 2D} \]

Efficienza bb vs quark leggeri
\[E_T = 100 \text{ GeV} \]

\[\varepsilon = 60\% \text{ (confronto non coerente)} \]
ATLAS reiezione \sim 80
CMS reiezione da 250 a 15 (\eta)
b-Tagging: con vertici secondari

La presenza di un vertice secondario nel jet da' una forte indicazione, ma non e' sufficiente a discriminare c-quark => vengono utilizzate informazioni aggiuntive:

ATLAS:
- Frazione di energia al VS
- Massa invariante al VS
- Numero di vertici

CMS:
- Molteplicita' carica al VS
- Massa invariante al VS
- Frazione di energia al SV...

Secondo WS sulla fisica di ATLAS e CMS – Napoli 13-15 ottobre 2004
b-Tagging: con vertici secondari

CMS

Le informazioni sono combinate in una “likelihood ratio”:

- Metodo ottimale qualora le variabili non siano correlate
- Si riesce a rigettare quark c?

\[L = \prod f_{\text{segnale}}(x) / f_{\text{bkg}}(x) \]

Jet nel barrel, \(E_T \) da 80 - 120 GeV, \(\epsilon_b = 60\% \):
reiezione \(>50 \) per gluoni e quark uds
\(>5 \) per quark c (prestazioni peggiore di un fattore 10)

Risultati preliminari! miglioramenti:
- Informazioni del parametro di impatto
- Includere le informazioni dei leptoni
b-Tagging: confronto delle prestazioni

Tra i diversi agoritmi di b-Tag in ATLAS e CMS

Eventi bb

Eventi WH

<table>
<thead>
<tr>
<th>b selection</th>
<th>2D</th>
<th>3D</th>
<th>$+2^{ndary}$ vertex</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>151 ± 6</td>
<td>300 ± 15</td>
<td>935 ± 87</td>
</tr>
<tr>
<td>60%</td>
<td>51 ± 1</td>
<td>87 ± 3</td>
<td>160 ± 6</td>
</tr>
</tbody>
</table>

Aggiungendo le informazioni del vertice secondario ill potere di reiezione migliora di un fattore > 3

prestazioni confrontabili per alte ε_b

“vecchia” calibrazione

Algoritmo SV non contiene ancora le informazioni del parametro di impatto!
b-Tagging con topologie complicate - ATLAS

ttH, H→bb (mH<130 GeV/c²)

tt -> 6 jet

Stato finale molto “popolato”:
4 b jet+ (almeno) 2 jet da quark leggeri
Fondo irriducibile: ttjj

- **Calibrazione**: jet leggeri filtrati dalla contaminazione di b e c
- Tracce nelle regioni di sovrapposizione dei jet possono condizionare le prestazioni di b-Tag
 => univocamente assegnate al jet più vicino in η–φ
Qualche sistematica sui jets

Un jet è isolato se si trova a una distanza minima di 0.8 in $\eta-\phi$ dagli altri jet.

- Per jet non isolati il potere di reiezione del b-Tagging degrada di $\sim 35\%$
- dovuto al loro spettro in p_T essendo principalmente jet da gluon splitting
- Reiezione Vs p_T a $\epsilon_b = 50\%$ confrontabile per jet isolati e non
b-Tagging
con topologie complicate - ATLAS

Potere di reiezione del b-Tag per i diversi sapori dei quark
canale ttH

 Senza PileUp

- Reiezione al 50% di efficienza b:
gluoni e quark u d s ~300
quark c ~ 10
B-Tagging solo
Vertice Secondario + Cinematica
Calibrazione non specifica per il ttH
Reiezione al 50% di efficienza b:
 gluoni e quark u d s ~50
 quark c ~10
Migliorera' sensibilmente!
Calibrazione

- Determinare i parametri:
 - p.e. Determinazione dei parametri delle funzioni analitiche usate per i fit
 (Probabilità di singola traccia o densità di probabilità per la likelihood),
 "tool esterni" (Vertex Finder, Jet Finder, etc...)
- Scrivere e leggere file di calibrazione

- Studiare gli effetti sistematici legati al rivelatore:
 - Rivelatore non allineato (esiste qualche studio in ATLAS)
 - Effetti dello staging

- Sviluppo (miglioramento) di nuovi (esistenti) algoritmi:
 - In particolare tecniche di b-tagging basate sul lepton, sia ATLAS che CMS
 ci stanno lavorando
 - migliorare il potere di reiezione sui quark c (massa invariante)
 - Tool dedicati per identificare un vertice secondario in un b-jet per
 (aumentare l'efficienza)
■ Importante soprattutto per i canali supersimmetrici (Higgs e produzione di stau)
■ Studi in canali esclusivi sono piú significativi
■ Canali di Higgs considerati:
 ■ H/A \rightarrow \tau \tau
 ■ H^+ \rightarrow \tau \nu
 ■ qqH, H \rightarrow \tau \tau

Principali canali di decadimento:

◆ Decadimento leptonico BR ~ 35%
 ■ \tau \rightarrow \nu + e + e
 ■ \tau \rightarrow \nu + \mu + \mu

◆ Decadimento adronico 1 prong BR ~ 50%
 ■ \tau \rightarrow \nu + \pi + x \pi_0 \ (x = 0, 1, 2, 3)

◆ Decadimento adronico 3 prong BR ~ 15%
 ■ \tau \rightarrow \nu + 3 \pi + x \pi^0 \ (x = 0, 1, 2, 3)
Tau-Tagging: strategie

- Tau adronico:
 - Cluster calorimetrico associato
 - Missing E_T
 - Jet molto collimati
 - 1, 3 tracce cariche
 - Parametro di impatto (ct~90µm)
 - Presenza di pioni neutri

- Tau leptonico:
 - Elettrone \Rightarrow come decadimento adronico 1 prong
 - Muone \Rightarrow Parametro di impatto e identificazione + isolamento del μ

ATLAS:
- Studi di Trigger a Livello 1
- Non ancora studi HLT su canali specifici
- Studi Offline

CMS:
- Studi di Trigger L1+HLT su canali specifici
- Studi Offline in corso d'opera
Tau-Tagging Livello 1
Informazioni calorimetriche -ATLAS

- Isolamento calorimetrico: usa le 12 trigger tower attorno al cluster “core” (tipicamente 2x2)
- Efficienza di selezione varia con le soglie L1

\[A \rightarrow \tau \tau \]
Efficienze in funzione della Et del tau jet
Non c'è una differenza significativa tra i decadimenti a 3 and 1 prong
Tau-Tagging Livello 1
Informazioni calorimetriche - CMS

- Isolamento calorimetrico: non più di 2 torri calorimetriche attive in una regione 4x4
- Canale di benchmark bbH, h→2τ-jet

Jet or τ E_{T}:
- 12x12 trigger tower E_{T} sums sliding in 4x4 steps with central 4x4 > others
- τ algorithm (isolated narrow energy deposits)
 - Redefine Jet as τ if none of the 9 4x4 region τ-veto bits are on
Output:
- Sorted top 4 jets & top 4 τ-jets & counts of jets above programmable thresholds

Purezza: distanza del jet-tau dal tau MC minore di 0.4 in ηφ
Tau-Tagging Livello 1

Rate

- QCD rate da 2 a 9 kHz alta luminosità

<table>
<thead>
<tr>
<th>Rate kHz</th>
<th>1T threshold (95%) (GeV)</th>
<th>2T threshold (95%) (GeV)</th>
<th>(\varepsilon(H \rightarrow \tau \tau)) (m_H=200 \text{ GeV/c}^2)</th>
<th>(\varepsilon(H^\pm \rightarrow \tau \nu)) (m_{H^\pm}=200 \text{ GeV/c}^2)</th>
<th>(\varepsilon(H \rightarrow \tau \tau)) (m_H=500 \text{ GeV/c}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>93 (86)</td>
<td>66 (59)</td>
<td>0.78</td>
<td>0.81</td>
<td>0.90</td>
</tr>
<tr>
<td>6</td>
<td>82 (75)</td>
<td>60 (53)</td>
<td>0.87</td>
<td>0.84</td>
<td>0.92</td>
</tr>
<tr>
<td>8</td>
<td>78 (71)</td>
<td>57 (50)</td>
<td>0.90</td>
<td>0.85</td>
<td>0.93</td>
</tr>
<tr>
<td>9</td>
<td>76 (69)</td>
<td>56 (49)</td>
<td>0.91</td>
<td>0.86</td>
<td>0.93</td>
</tr>
</tbody>
</table>

- QCD rate da 16 a 0.6 kHz bassa luminosità

<table>
<thead>
<tr>
<th>Core-(E_T) threshold</th>
<th>E.M. isolation threshold</th>
<th>Rate at (10^{33} \text{ cm}^{-2}\text{s}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 GeV</td>
<td>7 GeV</td>
<td>16.3 ± 0.4 kHz</td>
</tr>
<tr>
<td>40 GeV</td>
<td>10 GeV</td>
<td>2.1 ± 0.2 kHz</td>
</tr>
<tr>
<td>60 GeV</td>
<td>12 GeV</td>
<td>0.6 ± 0.1 kHz</td>
</tr>
</tbody>
</table>
Circa il 90% dell'energia del jet τ e' contenuta in un cono di ~0.2
e il 98% in cono ~0.4

- A Livello 2 risposta dei calorimetri e' migliorata, maggiore granularità
- Tau-jet ricostruito attorno alla direzione di L1
- L'energia trasversa delle torri calorimetriche e' usata per costruire
 la variabile di isolamento:

\[P_{isol} = \sum_{\Delta R < 0.4} E_T - \sum_{\Delta R < 0.13} E_T \]

efficienza di segnale ~86%
efficienza QCD ~30%

H/A \rightarrow 2\tau-jet Vs QCD
Le informazioni del tracciatore possono essere usate per migliorare l'isolamento => solo informarmozioni dei Pixel oppure tracce parzialmente ricostruite

Strategia generale:

- Cercare la traccia con p_T maggiore nel cono $\Delta R < R_m (R_m \sim 0.1)$
- Tutte le tracce nel cono $\Delta R < R_s (R_s \sim 0.07)$ attorno alla traccia di piu' alto p_T sono supposte venire dal tau
- Viene richiesto che nessuna traccia sia presente nel cono di isolamento $R_s < \Delta R < R_i (R_i \sim 0.2 \div 0.5)$
Efficienze rispetto al Livello 1 di h/A->2 tau-jet Vs QCD variando il cono di isolamento da 0.2 a 0.5

Calo+Pixel

Calo+Tracker

Il Trigger Calo+Pixel è circa 2 volte più veloce del Tracker+Calo con una perdita di efficienza di circa il 15%
H → ττ
Le variabili discriminanti sono combinate in una likelihood

τ-jets
qcd-jets
per diversi p_T bin
Efficienza di segnale Vs Reiezione del fondo QCD introducendo il noise e per diversi pT bin

Per un'efficienza di segnale di \(~45\%\) la reiezione QCD varia da 200 a 10000 dipendente da pT
Il parametro di impatto può essere usato per migliorare la reiezione del fondo QCD

ATLAS: parametro di impatto senza segno

CMS: utilizza la somma in quadratura dell'IP dei due tau:

\[\sigma_{12} = \sqrt{\sigma_{ip}(\tau_1)^2 + \sigma_{ip}(\tau_2)^2} \]
Conclusioni

- Tanto lavoro e' stato fatto e tanto ce ne e' ancora da fare...

- Confronti significativi sono difficili da fare: rivelatori diversi campioni di eventi diversi

- le prestazioni dei rivelatori (simulati) non cosi' distanti

- gli strumenti (framework, algoritmi, etc..) sono in continua evoluzione => performance di b-tagging e tau-tagging evolvono con loro

- e' importante approfondire la sistematica e gli studi "realistici" (detector non perfettamente allineato)

- sia per ATLAS che per CMS lo stato del lavoro e' avanzato le attuali prestazioni assicurano che riusciremo a rivelare decadimenti di b e \(\tau \) nei canali di scoperta