QCD at LHC

Vittorio Del Duca INFN Torino

Napoli 15 ottobre 2004

Premio Nobel 2004!

Search an unbroken Yang-Mills gauge field theory featuring asymptotic freedom \longrightarrow confinement

- Θ in non-perturbative regime (low Q^2) many approaches: lattice, Regge theory, χ PT, large N_c , HOET
- \bigcirc in perturbative regime (high Q^2) QCD is a precision toolkit for exploring Higgs & BSM physics

LEP was an electroweak machine

Tevatron & LHC are QCD machines

Precision QCD

Precise determination of

- ${igsidentsize{\circ}}$ strong coupling constant $\, lpha_s \,$
- parton distributions
- electroweak parameters
- LHC parton luminosity

Precise prediction for

- Higgs production
- new physics processes
- their backgrounds

Summary of $\alpha_S(M_Z)$

S. Bethke hep-ex/0407021

world average of $\alpha_S(M_Z)$ using $\overline{\rm MS}$ and NNLO results only $\alpha_S(M_Z) = 0.1182 \pm 0.0027$ (cf. 2002 $\alpha_S(M_Z) = 0.1183 \pm 0.0027$ outcome almost identical because new entries wrt 2002 - LEP jet shape observables and 4-jet rate, and HERA jet rates and shape variables - are NLO)

filled symbols are NNLO results

Strong interactions at high Q^2

- Parton model
- Perturbative QCD
 - factorisation
 - universality of IR behaviour
 - cancellation of IR singularities
 - IR safe observables: inclusive rates

🖲 jets

event shapes

Factorisation

is the separation between the short- and the long-range interactions

 $X = W, Z, H, Q\bar{Q}, \text{high-}E_T \text{jets}, \dots$

 $\hat{\sigma}$ is known as a fixed-order expansion in $lpha_S$

 $\hat{\sigma} = C\alpha_S^n (1 + c_1\alpha_S + c_2\alpha_S^2 + \ldots)$

 $c_1 = NLO$ $c_2 = NNLO$

or as an all-order resummation

 $\hat{\sigma} = C \alpha_S^n [1 + (c_{11}L + c_{10})\alpha_S + (c_{22}L^2 + c_{21}L + c_{20})\alpha_S^2 + \dots]$ where $L = \ln(M/q_T), \ln(1-x), \ln(1/x), \ln(1-T), \dots$ $c_{11}, c_{22} = \prod_{i=1}^{n} c_{10}, c_{21} = \text{NLL}$ $c_{20} = \text{NNLL}$

Evolution

- factorisation scale μ_F is arbitrary
 - $\bigcirc \text{ cross section cannot depend on } \mu_F$ $\mu_F \frac{d\sigma}{d\mu_F} = 0$

 $\begin{array}{ll} \text{implies DGLAP equations} & \text{V. Gribov L. Lipatov; Y. Dokshitzer} \\ \mu_F \frac{df_a(x, \mu_F^2)}{d\mu_F} = P_{ab}(x, \alpha_S(\mu_F^2)) \otimes f_b(x, \mu_F^2) + \mathcal{O}(\frac{1}{Q^2}) \\ \mu_F \frac{d\hat{\sigma}_{ab}(Q^2/\mu_F^2, \alpha_S(\mu_F^2))}{d\mu_F} = -P_{ac}(x, \alpha_S(\mu_F^2)) \otimes \hat{\sigma}_{cb}(Q^2/\mu_F^2, \alpha_S(\mu_F^2)) + \mathcal{O}(\frac{1}{Q^2}) \end{array}$

 $P_{ab}(x, \alpha_S(\mu_F^2))$ is calculable in pQCD

Factorisation-breaking contributions

- underlying event (see Rick Field's studies at CDF)
- power corrections
 - Solution MC's and theory modelling of power corrections laid out and tested at LEP where they provide an accurate determination of α_S models still need be tested in hadron collisions (see e.g. Tevatron studies at different \sqrt{s})
 - double-parton scattering
- 💡 diffractive events 🛛 🛁

Power corrections at Tevatron

Ratio of inclusive jet cross sections at 630 and 1800 GeV

- In the ratio the dependence on the pdf's cancels
 - dashes: theory prediction with no power corrections
 - solid: best fit to data with free power-correction parameter Λ in the theory

Factorisation in diffraction ??

diffraction in DIS double pomeron exchange in $p\bar{p}$

- no proof of factorisation in diffractive events
- Gata do not support it

3 complementary approaches to $\hat{\sigma}$

	matrix-elem MC's	natrix-elem MC's fixed-order x-sect	
final-state description	hard-parton jets. Describes geometry, correlations,	limited access to final-state structure	full information available at the hadron level
higher-order effects: loop corrections	hard to implement: must introduce negative probabilities	hard to implement: must introduce legative probabilities (when available)	
higher-order effects: hard emissions	included, up to high orders (multijets)	straightforward to implement (when available)	approximate, incomplete phase space at large angles
resummation of ? large logs		feasible (when available)	unitarity implementation (i.e. correct shapes but not total rates)

M.L. Mangano KITP collider conf 2004

Matrix-element MonteCarlo generators

efficient multi-parton generation: up to $2 \Rightarrow 9$ jets subprocesses

- ALPGEN M.L.Mangano M. Moretti F. Piccinini R. Pittau A. Polosa 2002
- MADGRAPH/MADEVENT W.F. Long F. Maltoni T. Stelzer 1994/2003
- COMPHEP A. Pukhov et al. 1999
- GRACE/GR@PPA T. Ishikawa et al. K. Sato et al. 1992/2001
- HELAC C. Papadopoulos et al. 2000

merged with parton showers

- all of the above, merged with HERWIG or PYTHIA
- SHERPA F. Krauss et al. 2003

talk di Frixione

Shower MonteCarlo generators

HERWIG B.Webber et al. 1992

being re-written as a C++ code (HERWIG++)

PYTHIA T. Sjostrand 1994

and more

S. Catani F. Krauss R. Kuhn B. Webber 2001

a procedure to interface parton subprocesses with a different number of final states to parton showers

MC@NLO S. Frixione B. Webber 2002

a procedure to interface NLO computations to shower MC's

talk di Frixione

NLO features

- Jet structure: final-state collinear radiation
- PDF evolution: initial-state collinear radiation
- Opening of new channels
- Θ Reduced sensitivity to fictitious input scales: μ_R , μ_F
 - predictive normalisation of observables
 - first step toward precision measurements
 - accurate estimate of signal and background for Higgs and new physics
- Matching with parton-shower MC's: MC@NLO

Jet structure

the jet non-trivial structure shows up first at NLO

Somebody's wishlist

Dear Santa Claus,

I'd like to have the following cross sections at NLO

Single boson	Diboson	Triboson	Heavy flavour
$W + \leq 5j$	$WW + \leq 5j$	$WWW + \leq 3j$	$t\bar{t} + \leq 3j$
$W + b\overline{b} + \leq 3j$	$WW + b\overline{b} + \leq 3j$	$WWW + b\overline{b} + \leq 3j$	$t\bar{t} + \gamma + \leq 2j$
$W + c\overline{c} + \leq 3j$	$WW + c\overline{c} + \leq 3j$	$WWW + \gamma\gamma + \leq 3j$	$t\bar{t} + W + \leq 2j$
$Z + \leq 5j$	$ZZ + \leq 5j$	$Z\gamma\gamma + \leq 3j$	$t\bar{t} + Z + \leq 2j$
$Z + b\overline{b} + \leq 3j$	$ZZ + b\overline{b} + \leq 3j$	$WZZ + \leq 3j$	$t\bar{t} + H + \leq 2j$
$Z + c\bar{c} + \leq 3j$	$ZZ + c\overline{c} + \leq 3j$	$ZZZ + \leq 3j$	$t\bar{b} + \leq 2j$
$\gamma + \leq 5j$	$\gamma\gamma + \leq 5j$		$b\bar{b} + \leq 3j$
$\gamma + bar{b} + \leq 3j$	$\gamma\gamma+bar{b}+\leq 3j$		
$\gamma + c\overline{c} + \leq 3j$	$\gamma\gamma + c\overline{c} + \leq 3j$		
	$WZ + \leq 5j$		
	$WZ + b\overline{b} + \leq 3j$		
	$WZ + c\overline{c} + \leq 3j$		
	$W\gamma + \leq 3j$		
	$Z\gamma + \leq 3j$		

Run II Monte Carlo Workshop, April 2001

NLO history

- $e^+e^- \rightarrow 3 \text{ jets}$ K. Ellis, D. Ross, A. Terrano 1981
 - $e^+e^- \rightarrow 4 \text{ jets}$ Z. Bern et al., N. Glover et al., Z. Nagy Z. Trocsanyi 1996-97
- $egin{array}{ccc} & pp
 ightarrow V+1 \; {
 m jet} & {
 m W}.$ Giele N. Glover & D. Kosower I 993
 - $pp \rightarrow V + 2 \text{ jet}$ Bern et al., Glover et al. 1996-97, K. Ellis & Campbell 2003
- $\begin{array}{lll} & pp \rightarrow Vb\overline{b} & \mbox{K. Ellis \& J. Campbell 2003} \\ & pp \rightarrow Vb\overline{b} + 1 \ \mbox{jet} & \ \ \ref{eq:product} \end{array}$
- $\ensuremath{\wppp} \to VV$ Ohnemus & Owens, Baur et al. 1991-96, Dixon et al. 2000 $pp \to VV + 1$ jet??
- $Pp \rightarrow \gamma \gamma$ B. Bailey et al 1992, T. Binoth et al 1999
 - $pp
 ightarrow \gamma \gamma + 1 \,\, {
 m jet}$ Z. Bern et al. 1994, V. Del Duca et al. 2003
- $\ensuremath{ {\it pp} \rightarrow Q \bar Q}$ Dawson K. Ellis Nason 1989, Mangano Nason Ridolfi 1992 $pp \rightarrow Q \bar Q + 1 \; {\rm jet}$ A. Brandenburg et al. 2005 ?

NLOJET++

Author(s): Z. Nagy http://www.ippp.dur.ac.uk/~nagyz/nlo++.html Multi-purpose C++ library for calculating jet cross-sections in $e^+e^$ annihilation, DIS and hadron-hadron collisions.

MCFM

Author(s): JC, R. K. Ellis http://mcfm.fnal.gov Fortran package for calculating a number of processes involving vector bosons, Higgs, jets and heavy quarks at hadron colliders.

AYLEN/EMILIA

Author(s): L. Dixon, Z. Kunszt, A.Signer, D. de Florian http://www.itp.phys.ethz.ch/staff/dflorian/codes.html Fortran implementation of gauge boson pair production at hadron colliders, including full spin and decay angle correlations.

 $p\bar{p} \longrightarrow VV'$ and $p\bar{p} \longrightarrow V\gamma$ with V, V' = W, Z

Anomalous triple gauge boson couplings at the LHC:

hep-ph/0002138

DIPHOX/EPHOX

Author(s): P. Aurenche, T.Binoth, M. Fontannaz, J. Ph. Guillet, G. Heinrich, E. Pilon, M. Werlen http://wwwlapp.in2p3.fr/lapth/PHOX_FAMILY/main.html Fortran code to compute processes involving photons, hadrons and jets in DIS and hadron colliders.

$$p\bar{p} \longrightarrow \gamma + \leq 1 \text{ jet}$$

 $p\bar{p} \longrightarrow \gamma \gamma$
 $\gamma p \longrightarrow \gamma + \text{ jet}$

Preliminary H1 data, hep-ph/0312070.

Heavy quark production

Author(s): M. L. Mangano, P. Nason and G. Ridolfi http://www.ge.infn.it/~ridolfi/hvqlibx.tgz Fortran code for the calculation of heavy quark cross-sections and distributions in a fully differential manner

- Based on the more inclusive calculations of Dawson et al, Beenakker et al.
- Does not include multiple gluon radiation, $\log(p_T/m_b)$ (FONLL) Cacciari et al., hep-ph/9803400
- These are the same matrix elements that are incorporated into MC@NLO Frixione et al., hep-ph/0305252

NLO assembly kit

NLO production rates

Process-independent procedure devised in 1992-96

Giele Glover & Kosower; Frixione Kunszt & Signer, Catani & Seymour slicing subtraction

$$\hat{\sigma} = \sigma^{\text{LO}} + \sigma^{\text{NLO}} = \int_{n} d\sigma^{B} + \sigma^{\text{NLO}}$$
$$\sigma^{\text{NLO}} = \int_{n+1} d\sigma^{R} + \int_{n} d\sigma^{V}$$

the 2 terms on the rhs are divergent in d=4

use universal IR structure to subtract divergences

$$\sigma^{\text{NLO}} = \int_{n+1} \left[(d\sigma^R)_{\epsilon=0} - (d\sigma^A)_{\epsilon=0} \right] + \int_n \left(d\sigma^V + \int_1 d\sigma^A \right)_{\epsilon=0}$$

the 2 terms on the rhs are finite in d=4

NLO complications

- Ioop integrals are involved and process-dependent
- more particles many scales more particles many scales
 - even though it is known how to compute loop integrals with $2 \rightarrow n$ particles no integrals with n > 3 (4) have been computed analytically (numerically)
 - no numeric methods yet for hadron collisions
 - counterterms are subtracted analytically

b cross section in $p\bar{p}$ collisions at 1.96 TeV

NLO + NLL

perfect agreement with data (with use of updated FF's by Cacciari & Nason)

Cacciari, Frixione, Mangano, Nason, Ridolfi 2003

Inclusive jet p_T cross section at Tevatron

good agreement between NLO and data over several orders of magnitude

constrains the gluon distribution at high x

di-lepton rapidity distribution for (Z, γ^*) production vs. Tevatron Run I data

Is NLO enough to describe data ? Drell-Yan W cross section at LHC with leptonic decay of the W								
Cuts A $\longrightarrow \left \eta^{(e)}\right < 2.5, \ p_{_T}^{(e)} > 20 \ { m GeV}, \ p_{_T}^{(u)} > 20 \ { m GeV}$								
	Cuts B $\longrightarrow \left \eta^{(e)}\right < 2.5, \ p_{_T}^{(e)} > 40$ GeV, $p_{_T}^{(u)} > 20$ GeV							
		LO		LO+HW	NLO	MC@NLO		
	Cuts A	0.5249	<u>−7.7</u> %	0.4843	0.4771	+ <u>1.5</u> % 0.4845		
		↓5.4%			↓7.0%	↓6.3%		
	Cuts A, no spin	0.5535			0.5104	0.5151		
	Cuts B	0.0585	+ <u>208</u> %	0.1218	0.1292	+2.9% 0.1329		
		↓29%			↓16%	↓18%		
	Cuts B, no spin	0.0752			0.1504	0.1570		

 $|MC@NLO - NLO| = \mathcal{O}(2\%)$

S. Frixione M.L. Mangano 2004

NNLO useless without spin correlations

Precisely evaluated Drell-Yan W, Z cross sections could be used as ``standard candles'' to measure the parton luminosity at LHC

Total cross section for inclusive Higgs production at LHC

NNLO prediction stabilises the perturbative series

NNLO state of the art

- **Orell-Yan** W, Z production
 - total cross section Hamberg, van Neerven, Matsuura 1990 Harlander, Kilgore 2002
 - Providity distribution Anastasiou et al. 2003
- Higgs production
 - total cross section Harlander, Kilgore; Anastasiou, Melnikov 2002
 - fully differential cross section

Anastasiou, Melnikov, Petriello 2004

 $\Theta e^+e^- \rightarrow 3$ jets

the C_F^2 term the Gehrmanns, Glover 2004

Drell-Yan Z production at LHC

30%(15%) NLO increase wrt to LO at central Y's (at large Y's) NNLO decreases NLO by 1-2%

scale variation: $\approx 30\%$ at LO; $\approx 6\%$ at NLO; less than 1% at NNLO

Scale variations in Drell-Yan Z production

Drell-Yan W production at LHC

Higgs production at LHC

a fully differential cross section: bin-integrated rapidity distribution, with a jet veto

 $M_H = 150 \text{ GeV}$ (jet veto relevant in the $H \to W^+ W^-$ decay channel)

K factor is much smaller for the vetoed x-sect than for the inclusive one: average $|\mathbf{p}_T^j|$ increases from NLO to NNLO: less x-sect passes the veto

NNLO assembly kit

Two-loop matrix elements

two-jet production $qq' \rightarrow qq', \ q\bar{q} \rightarrow q\bar{q}, \ q\bar{q} \rightarrow qg, \ gq \rightarrow qq$ C.Anastasiou N. Glover C. Oleari M. Tejeda-Yeomans 2000-01 Z. Bern A. De Freitas L. Dixon 2002 photon-pair production $q\bar{q} \rightarrow \gamma\gamma, gg \rightarrow \gamma\gamma$ C.Anastasiou N. Glover M. Tejeda-Yeomans 2002 Z. Bern A. De Freitas L. Dixon 2002 $e^+e^- \rightarrow 3 \text{ jets} \qquad \gamma^* \rightarrow q\bar{q}q$ L. Garland T. Gehrmann N. Glover A. Koukoutsakis E. Remiddi 2002 V+1 jet production $q\bar{q} \rightarrow Vg$ G T. Gehrmann E. Remiddi 2002 Drell-Yan V production $q\bar{q} \rightarrow V$ R. Hamberg W. van Neerven T. Matsuura 1991 Higgs production $gg \to H$ (in the $m_t \to \infty$ limit) R. Harlander W. Kilgore; C. Anastasiou K. Melnikov 2002

NNLO cross sections

Z. Bern W. Kilgore C. Schmidt VDD 1998-99; D. Kosower P. Uwer 1999; D. Kosower 2003

universal subtraction counterterms

- G
- several ideas and works in progress but so far not yet completely figured out

S. Weinzierl; A. Gehrmann-De Ridder T. Gehrmann G. Heinrich 2003

Х

Parton distribution functions (PDF)

factorisation for the structure functions (e.g. F_2^{ep}, F_L^{ep})

$$\mathcal{F}_i(x,\mu_F^2) = C_{ij} \otimes q_j + C_{ig} \otimes g$$

with the convolution $[a \otimes$

$$(b) b](x) \equiv \int_{x}^{1} \frac{dy}{y} a(y) b\left(\frac{x}{y}\right)$$

 $C_{ij}, \ C_{ig}$ coefficient functions $q_i(x,\mu_F^2) \quad g(x,\mu_F^2)$ PDF's

G

DGLAP evolution equations

$$\frac{d}{d\ln\mu_F^2} \left(\begin{array}{c} q_i \\ g \end{array}\right) = \left(\begin{array}{cc} P_{\mathbf{q}_i\mathbf{q}_j} & P_{\mathbf{q}_j\mathbf{g}} \\ P_{\mathbf{g}\mathbf{q}_j} & P_{\mathbf{g}\mathbf{g}} \end{array}\right) \otimes \left(\begin{array}{c} q_j \\ g \end{array}\right)$$

perturbative series P

$$P_{ij} \approx \alpha_s P_{ij}^{(0)} + \alpha_s^2 P_{ij}^{(1)} + \alpha_s^3 P_{ij}^{(2)}$$

anomalous dimension
$$\gamma_{ij}(N) = -\int_0^1 dx \ x^{N-1} \ P_{ij}(x)$$

PDF's

general structure of the quark-quark splitting functions

$$P_{\mathbf{q}_{i}\mathbf{q}_{k}} = P_{\bar{\mathbf{q}}_{i}\bar{\mathbf{q}}_{k}} = \delta_{ik}P_{\mathbf{q}\mathbf{q}}^{\mathbf{v}} + P_{\mathbf{q}\mathbf{q}}^{\mathbf{s}}$$
$$P_{\mathbf{q}_{i}\bar{\mathbf{q}}_{k}} = P_{\bar{\mathbf{q}}_{i}\mathbf{q}_{k}} = \delta_{ik}P_{\mathbf{q}\bar{\mathbf{q}}}^{\mathbf{v}} + P_{\mathbf{q}\bar{\mathbf{q}}}^{\mathbf{s}}$$

non-singlet

singlet

a flavour asymmetry $q_{ns,ik}^{\pm} = q_i \pm \bar{q}_i - (q_k \pm \bar{q}_k) \qquad \qquad P_{ns}^{\pm} = P_{qq}^{v} \pm P_{q\bar{q}}^{v}$ sum of valence distributions of all flavours $q_{ns}^{v} = \sum_{r=1}^{n_f} (q_r - \bar{q}_r) \qquad \qquad P_{ns}^{v} = P_{qq}^{v} - P_{q\bar{q}}^{v} + n_f (P_{qq}^{s} - P_{q\bar{q}}^{s})$

 $q_{\rm s} = \sum_{i=1}^{n_f} (q_i + \bar{q}_i) \quad \bigstar \quad \frac{d}{d \ln \mu_F^2} \begin{pmatrix} q_{\rm s} \\ g \end{pmatrix} = \begin{pmatrix} P_{\rm qq} & P_{\rm qg} \\ P_{\rm gq} & P_{\rm gg} \end{pmatrix} \otimes \begin{pmatrix} q_{\rm s} \\ g \end{pmatrix}$ with $P_{\rm qq} = P_{\rm ns}^{+} + n_f (P_{\rm qq}^{\rm s} + P_{\bar{\rm qq}}^{\rm s})$

with
$$P_{qg} = n_f P_{q_ig}$$
, $P_{gq} = P_{gq_i}$

PDF history

leading order (or one-loop) anomalous dim/splitting functions

NLO (or two-loop)

 F_2, F_L

anomalous dim/splitting functions

NNLO (or three-loop)

Gross Wilczek 1973; Altarelli Parisi 1977

Bardeen Buras Duke Muta 1978 Curci Furmanski Petronzio 1980

Zijlstra van Neerven 1992; Moch Vermaseren 1999

anomalous dim/splitting functions

Moch Vermaseren Vogt 2004

 F_2, F_L

the calculation of the three-loop anomalous dimension is the toughest calculation ever performed in perturbative QCD!

20 man-year-equivalents, 10^6 lines of dedicated algebra code

Numerical examples

exact NNLO results, estimates from fixed moments and leading small-x term

HERA F_2

Bjorken-scaling violations

HI, ZEUS: ongoing fits for PDF's; so far NNLO not included

PDF global fits

global fits

MRST: Martin Roberts Stirling Thorne CTEQ: Pumplin et al. Alekhin (DIS data only)

🍚 m

method

Perform fit by minimising χ^2 to all data, including both statistical and systematic errors

Start evolution at some Q_0^2 , where PDF's are parametrised with functional form, e.g. $xf(x,Q_0^2) = (1-x)^{\eta}(1+\epsilon x^{0.5}+\gamma x)x^{\delta}$

Cut data at $Q^2>Q^2_{\rm min}$ and at $W^2>W^2_{\rm min}$ to avoid higher twist contamination

Allow $\bar{u} \neq \bar{d}$ as implied by E866 Drell-Yan asymmetry data

accuracy

NLO evolution and fixed moments of NNLO J. Stirling, KITP collider conf 2004 H1, ZEUS $F_2^{e^+p}(x,Q^2)$, $F_2^{e^-p}(x,Q^2)$ BCDMS $F_2^{\mu p}(x,Q^2)$, $F_2^{\mu d}(x,Q^2)$ NMC $F_2^{\mu p}(x,Q^2)$, $F_2^{\mu d}(x,Q^2)$, $(F_2^{\mu n}(x,Q^2)/F_2^{\mu p}(x,Q^2))$ SLAC $F_2^{\mu p}(x,Q^2)$, $F_2^{\mu d}(x,Q^2)$ E665 $F_2^{\mu p}(x,Q^2)$, $F_2^{\mu d}(x,Q^2)$ CCFR $F_2^{\nu(\bar{\nu})p}(x,Q^2)$, $F_3^{\nu(\bar{\nu})p}(x,Q^2)$

o q, ar q at all x and g at medium, small x H1, ZEUS $F^{e^+p}_{2,c}(x,Q^2) o c$

E605, E772, E866 Drell-Yan $pN \rightarrow \mu \bar{\mu} + X \rightarrow \bar{q}$ (g) E866 Drell-Yan p,n asymmetry $\rightarrow \bar{u}, \bar{d}$

 CDF W rapidity asymmetry o u/d ratio at high x

CDF, D0 Inclusive jet data $\rightarrow g$ at high x

CCFR, NuTeV Dimuon data constrains strange sea s, s

MRST 2001 PDF's

PDF uncertainties

- direct effect on Tevatron & LHC cross section predictions
 - various approaches being used, most notably
 - Hessian (error matrix) approach (HI, ZEUS, CTEQ, Alekhin)

$$\chi^2 - \chi^2_{min} \equiv \Delta \chi^2 = \sum_{i,j} (a_i - a_i^{(0)}) H_{ij} (a_j - a_j^{(0)})$$

H is related to the covariance matrix of the parameters $C_{ij}(a) = \Delta \chi^2 (H^{-1})_{ij}$ diagonalise H_{ij} and define PDF sets S_i^{\pm} displaced along the eigenvector direction by $\Delta \chi^2 = \sum_i z_i^2$. Then uncertainty on physical quantity is given by $(\Delta F)^2 = \frac{1}{2} \sum_i \left(F(S_i^{(+)}) - F(S_i^{(-)})\right)^2$

Lagrange multiplier method (CTEQ, MRST) perform fit while constraining value of some physical quantity F. Minimise

 $\Psi(\lambda, a) = \chi^2_{\text{global}}(a) + \lambda F(a)$

for various values of λ and parton parameters $\{a\}$. Gives set of best fits for particular values of parameter F(a). Uncertainty then determined by deciding allowed range of $\Delta \chi^2$. Can also see which data sets in global fit most directly influenced by variation in F(a)

want to know more ? see e.g. R. Thorne et al hep-ex/0205233

Error on up distribution at $Q^2 = 10000 \text{ GeV}^2$

from MRST2001E (see hep-ph/0211080)

W, Z total cross sections

- MRST2001
- NNLO: only few fixed moments
- ${\small \bigcirc} \ {\small current best (MRST) estimate} \\ \delta \sigma^{\rm NNLO}_{W,Z} ({\rm total ~pdf}) = \pm 4\% \\ {\small (expt. pdf error is 2\%)}$
- Iarger uncertainty in the NLO prediction, because of problems at small x in the global fit to DIS data and because large rapidity W, Z's sample small x

PDF uncertainty on W, WH cross sections at LHC

MRST2001E

use $\sigma(W), \sigma(Z)$ as ``standard candles'', i.e. to calibrate other cross sections, e.g. $\sigma(WH)$

 $\sigma(WH)$ more precisely predicted because it samples quark PDF's at higher xthan $\sigma(W)$

Hinc sunt photones Photons at fixed-target experiments \bigcirc probe the gluon distribution at high xat $\sqrt{s} = 1800$ GeV, $p_{Tjet} = 180$ GeV $\implies x_T = 0.2$

data are not consistent with theory, and (even more worrisome) are not consistent with each other

G

currently they are not used in PDF fits

P.Aurenche et al. 1998

Photons at the Tevatron at ~1800~GeV and ~630~GeV

data are not consistent with theory (but D0 is better off than CDF) Problems ? TH: Narrow isolation cones used by experiments

Photons as a background to Higgs searches

Conclusions

- QCD is an extensively developed and tested gauge theory
 - a lot of progress in the last 4-5 years in
 - MonteCarlo generators
 - NLO cross sections with one more jet
 - NNLO computations
 - better and better approximations of signal and background for Higgs and New Physics
 - new formal developments (I didn't discuss): QCD as a string theory in twistor space
 - novel ways of computing (analytically)
 tree multi-parton matrix elements and
 (N=4) loop matrix elements
 F. Cachazo P. Svrcek E. Witten 2004

E.Witten 2003