SM e MSSM Higgs ad LHC

1

Simone Gennai

INFN Sez. di Pisa & Scuola Normale Superiore

Evelin Meoni, Universita' della ^{18/10/2004} INFN & Università degli Studi della Calabria</sup>

Higgs Standard Model

- I limiti sulla massa del SM Higgs
- Processi di produzione e decadimento del SM Higgs ad LHC
- Studio dei canali piu' promettenti per la scoperta del SM Higgs ad LHC

Higgs MSSM

- Processi di produzione e decadimento del MSSM Higgs ad LHC
- Studio dei canali di decadimento principali per MSSM Higgs ad LHC

Problematiche allo start-up

- Gli studi preliminari sui detector fondamentali per la scoperta del Higgs
- · L'impatto dello staging dei detector sulla scoperta del Higgs

I limiti della massa del SM Higgs

Da ricerche sperimentali dirette (misura combinata degli esperimenti di LEP2) si ha:

 M_{H} >114.4 GeV/c² (95% C.L.)

sita' della

Il processo dominante e' la <mark>fusione g-g</mark>, per M_H< 2M_Z il processo VBF costituisce il 20% della sezione d'urto totale

I processi di decadimento del SM Higgs

I canali piu' promettenti

Canali inclusivi $(gg \rightarrow H)$:

 $\begin{array}{l} H \rightarrow \gamma \gamma \\ H \rightarrow ZZ(^{*}) \rightarrow 4I, \ IIvv \\ H \rightarrow WW(^{*}) \rightarrow IIvv, \ Ivjj \end{array}$

Canale esclusivo (produzione associata):

 $H \rightarrow bbar$ in ttH,WH

18/10/2004

Qualche osservazione ...

I Monte Carlo

Aspetti cruciali: conoscenza delle Funzioni di Distribuzione dei Partoni, trattazione della radiazione di QCD, calcolo accurato delle sezioni d'urto (NLO-NNLO)

La simulazione del detector e i codici di ricostruzione

Sono necessari studi di fisica con la nuova full simulation ed i codici di ricostruzione completa (work in progress!)

I fondi sono : $\gamma\gamma$, γ jet, jet-jet

E' necessaria una buona reiezione di fotoni fake

Il recupero dei fotoni convertiti e l'individuazione del vertice primario migliorano di molto la risoluzione in massa

E' il canale che permette la migliore misura della massa dello Higgs. Si puo' ottenere una precisione migliore dell'1% CMS (~1% ATLAS) per masse del bosone tra i 100 e i 150 GeV

E' necessaria una L~30-40 fb⁻¹ per una significanza di 5σ

L'analisi del canale VBF e la produzione associata con un jet migliora la significanza

 $H \rightarrow ZZ(*) \rightarrow 4I$ I fondi principali sono : ZZ \rightarrow 4I, ZZ $\rightarrow \tau\tau II$, Zbbar \rightarrow 4I+X, ttbar \rightarrow 4I+X

Altri sviluppi : • 2 Reti neurali (o likelihood): una con le 2 M_Z ,PT_H e le variabili angolari (solo se l'Higgs ha spin zero e CP=+1), l'altra con le variabili di isolamento 18/10/2004 Calabria

CMS presenta risultati migliori di ATLAS ma non tiene conto di tutti i fondi ed usa PDF differenti →riscalando i risultati sono compatibili

Il fondo ttbb: i Monte Carlo(2)

Il fondo tt+jets (3)

Metodo per determinare forma e livello del bkg dai dati:

```
Si seleziona un control
sample dai dati:
ttjj → lvb jjb jj e si
corregge la forma usando
il MC
```

Il livello si ricava da sidebands della distribuzione m_{bb}

Con tale metodo è attesa un'incertezza sul fondo di ~10% per $L{=}30 fb^{-1}$

Evelin Meoni, Universita' della Calabria

VBF

La produzione VBF comporta uno stato finale con segnatura distintiva : i due quark iniziali hanno un piccolo angolo di scattering ne consegue una segnatura ad alti η ed una soppressione dell'attività adronica nella zona centrale dovuta alla mancanza di scambio di colore

rsita' della

<u>Stategia di analisi tipica per un canale VBF:</u>

- ·2 jet ad alto pT con grande separazione in η
- I prodotti di decadimento del Higgs giacciono fra i 2 jet
- ·Jet veto nella zona centrale
- Cutoff sulla massa invariante dei 2 jet
 (M_{ii} >0.6 -1 TeV)

 $VBF: H \rightarrow WW^{(*)} \rightarrow \ell v \ell v (2)$

L'utilizzo di techiche multivariate porta ad un miglioramento fra il 20% e il 50% a seconda di M_H rispetto all'analisi precedente

Le distribuzioni in pT mostrano notevoli differenze, Tuttavia le variazioni della significanza sono contenute (al livello di 10%)

La normalizzazione del fondo (4)

Atlas

Bisogna normalizzare i MC direttamente dai dati. 2 idee:

1) Control sample: **ttbar** \rightarrow **lvb jjb**

2) Si applicano a segnale e fondi, i tagli precedenti tranne quelli sui leptoni , il livello di bkg si ottiene mediante normalizzazione ad alte masse trasverse, sotto il picco il livello si deduce a partire da un MC che descrive la forma del fondo

Ad una luminosità integrata di 10fb⁻¹ si puo' ottenere una incertezza statistica sulla normalizzazione del fondo di circa il 10%

Il potenziale di scoperta

Produzione degli MSSM Higgs (h⁰, H⁰, A, H[±])

I canali di decadimento piu' promettenti

h \rightarrow γγ (inclusivo,	Wh, tth e	VBF)
$h \rightarrow bb$ (Wh e tt)	n)	
bbh \rightarrow bb $\mu\mu$		
h →ττ (VBF)		
$h \rightarrow ZZ \rightarrow 4I$		

 $\begin{array}{l} \mathsf{H/A} \rightarrow \tau\tau \rightarrow \mathsf{lvlv}, \ \mathsf{lv+jet}, \ \mathsf{jet-jet} \\ (\text{inclusivo o in bbH}) \\ \mathsf{H/A} \rightarrow \mu\mu (\text{inclusivo o in bbH}) \\ \mathsf{H} \rightarrow \mathsf{ZZ} \rightarrow \mathsf{4l} \\ \mathsf{A} \rightarrow \mathsf{Zh} \ \mathsf{con} \ \mathsf{h} \rightarrow \mathsf{bb} \\ \mathsf{H/A} \rightarrow \widetilde{\chi}_{i}^{\,0} \widetilde{\chi}_{i}^{\,0}, \widetilde{\chi}_{i}^{\,\pm} \widetilde{\chi}_{i}^{\,\pm} \\ (\text{se le particelle supersimm. sono accessibili}) \end{array}$

 $\begin{array}{l} \mathsf{H}^{\pm} \to \mathsf{tb} \\ \mathsf{H}^{\pm} \to \tau \mathsf{v} \\ \mathsf{H}^{\pm} \to \mathsf{Wh} \text{ (piccoli } \mathsf{tan}\beta) \\ \\ \mathsf{H}^{\pm} \to \widetilde{\chi}_{i}^{\pm} \widetilde{\chi}_{i}^{0} \text{ (se le particelle supersimm. sono accessibili)} \end{array}$

$H/A \rightarrow \tau \tau$

 $\alpha \alpha \alpha \alpha$

ന്നസ

Fondi principali per had+had: W+jet, tt,Z+jet, QCD jet

Studi approfonditi sulle strategie di trigger per rigettare la QCD: combinazione calorimetria+ tracker

A/H

b–Jet

t−Jet

(Full Simulation)

Selezione: 2 τ -jet taggati ben separati angolarmente ed 1 b-jet taggato

lin Meoni, Universita' della: Calabria

H±→tb

I fondi principali sono: ttb, ttq

Il trigger e' fornito dal decadimento semileptonico del t
3 jet b e 2 jet no b
Ricostruzione dei W
Ricostruzione dei 2 t

versita' della

ia

Il piano (m_A-tan β) a 5 σ

Già a L=10fb⁻¹ gran parte del piano 5σ è coperta. A L=30fb⁻¹ la copertura è totale. Regione più difficile per valori medi di tg β e M_A , per una larga parte di piano solo h rivelabile

Il primo periodo di data taking

Calibrazioni e controlli	Campione	Eventi su nastro a L=10fb ⁻¹	
Performance ID (Scala dell'impulso, calibrazione	Z →ee	107	
intermodulo, E/p)	$Z \rightarrow \mu\mu$	107	
Perfomance calorimetro ECAL (Scale di energie dell' ECAL	$Z \rightarrow ee$	107	
E/p)	W →ev	108	
Performance calorimetro HCAL (Scale di energia dei jet)	W <i>→jj</i> (t tbar → Wb Wb → Iv jj b)	10 ⁶	
Performance spettromentro	$Z \rightarrow \mu\mu$	107	
(Scala di momento dei µ)	$\mathbf{W} \rightarrow \mu \nu$	10 ⁸	
Altri item: separazione e/jet e γ /jet, τ -tag ,b-tag ,calibrazione E _T mancante,MC tuning ecc			

Un esempio : $H \rightarrow \gamma \gamma$

Per poter osservare il picco di segnale sul fondo è necessaria una risoluzione in massa dell' 1%

E' necessario che il termine costante della risoluzione in energia del calorimetro EM sia Ctot<0.7%

^CTOT ^{= C}L^{⊕C}LR dove C_L =0.5% è legato alla risoluzione dei singoli moduli(misura di testbeam) C_{I P} è legato alla risoluzione su lungo range (variazioni da modulo a modulo, differenti materiali a monte)

Per correggere le disuniformità su larga scale si calibra il calorimentro EM con eventi Z \rightarrow ee. In modo tale che C_{LR}<0.4% (necessari 250e per regione)

Nell' ipotesi PESSIMISTICA di disuniformità dei singoli moduli e mancata calibrazione, si ha : $C_{L=}$ 1.3% e C_{LR} = 1.5% ovvero C_{TOT} = 2%

Si ha una degradazione della significanza per $H \rightarrow \gamma\gamma$ di ~ 25% per m_H =115 GeV, ovvero è necessaria un aumento di luminosità integrata di ~50%

Impatto dello staging dei detector sul Higgs

			_
Parte del detector mancante	Impatto principale durante il primo run su	Effetto	
Uno dei 3 pixel layer, non quello b (ID)	ttH → ttbb	~8% di perdita in significanza	Ŷ
Gap scintillators (Calorimetro EM)	H → 4e	~8% di perdita in significanza	
MDT EES/EEL (Spettrometro)	A/H → 2μ	~5% di perdita in significanza per M _H ~300GeV	

Per compensare tali effetti sarà necessario un aumento della Iuminosità integrata di circa 10-15% Evelin Meoni, Universita' della

Calabria

tlas

- Con 10 fb⁻¹ integrati (ATLAS + CMS) si puo' pensare di scoprire un SM Higgs nel range di massa tra ~115 e ~700 GeV
 - A patto che gli apparati siano calibrati e allineati
- LHC sarà in grado di esplorare il settore degli Higgs del MSSM per una regione molto ampia nello piano M_A -tg β già nel primo anno di presa dati
- La scoperta dell'Higgs deve essere "robusta" rispetto alle sistematiche indotte dalla conoscenza dei fondi (fondamentali: analisi con MC "realistici", tuning degli MC dai dati)
- L'utilizzo di tecniche multivariate (Likelihood e Reti Neurali) migliora il potenziale di scoperta rispetto ad analisi con tagli su singole variabili
- ATLAS e CMS stanno cominciando a valutare l'impatto delle calibrazioni iniziali e dello "staging" del rivelatore sulle scoperta dell'Higgs

DISCUSSIONE

Evelin Meoni, Universita' della Calabria

VBF: le performance del detector

E' fondamentale ai fini dello studio dei canali di decadimento attraverso VBF una buona efficienza di ricostruzione dei jets ed una buona reiezione da jet di pile-up nella zona centrale e nelle zone forward

Le distribuzioni in pT mostrano notevoli differenze, Tuttavia le variazioni della significanza sono contenute (al livello di 10%)

CMS presenta risultati migliori di ATLAS ma non tiene conto di tutti i fondi ed usa PDF differenti →riscalando i risultati sono compatibili

Il fondo ttbb: i Monte Carlo(2)

$H \rightarrow \tau \tau$ con un jet associato

Analisi piu' facile rispetto al canale VBF: richieste meno stringenti sul jet tag nella regione forward – Tagli piu' stringenti invece sul veto di jet centrali e sul pT dei jet

Il pT del Higgs è una delle variabili discriminanti

Evelin Meoni, Universita' della Calabria

Tabella riassuntiva

Canale	Fondo principale	S/B	Sistematiche sul fondo per 5 ₀	Tecniche proposte e commenti
Η- >γγ	Irreduc. γγ Riducibile γ j	2-3%	0.4%	Side-bands stat Err ~0.5% per 30-100 fb ⁻¹
ttH H->bb	ttjj	30%	6%	Mass side-bands Anti b-tagged ttjj ev. (in studio)
H->ZZ*-> 4 lep	ZZ->4l e ττll Riducib. tt, Zbb	300-600%	60%	Mass side-bands Stat Err <30% 30fb ⁻¹
H->WW*->II _{VV}	WW*, †W	30-50%	6%	Non c'e' picco di massa (da studiare)
VBF channels In general	QCD/EW	Studio di forward jet e veto sui jet centrali		EW ZZ e WW leptonico (da studiare)
VFB H->WW	tt, WW, Wt	50-200%	10%	Studi su Z,W,WW e tt + jet con variabili discriminanti (in studio)
VBF H->ττ	Zjj, ττ	50-400%	10%	Calibrazione di Et mancante (da studiare)
MSSM (bb)Η/Α->ττ	Ζ- > ττ, Wj	25% tgb=15 MA=300	5%	Mass side-bands Stat Err ~5% 30fb ⁻¹
MSSM (bb)Η/Α -> μμ	Ζ/γ*-> μμ	12% tgb=15 MA=150	~2%	Mass side-bands Stat Err ~2% 30fb ⁻¹

Impatto dello staging dei detector sul Higgs

Parte del detector mancante	Impatto principale durante il primo run su	Effetto	
Uno dei 3 pixel layer, non quello b (ID)	ttH → ttbb	~8% di perdita in significanza	Q
Gap scintillators (Calorimetro EM)	H → 4e	~8% di perdita in significanza	
MDT EES/EEL (Spettrometro)	A/H → 2μ	~5% di perdita in significanza per M _H ~300GeV	

Per compensare tali effetti sarà necessario un aumento della Iuminosità integrata di circa 10-15% Evelin Meoni, Universita' della

18/10/2004

Calabria

tlas

ÇP SUSY Higgs

Calabria

18/10/2004

Evelin Meoni, Universita' della Calabria

$H \rightarrow ZZ^* \rightarrow 4I$

 $H \rightarrow WW () \rightarrow \ell \ell vv$

I fondi principali sono WW* e tW

Stategia dell'analisi (tagli su sigole variabili) Ricostruzione di leptoni isolati con tagli in pT ET mancante Correlazioni fra i leptoni (variabili angolari, pT massimo) Veto sui jet centrali

Calabria

VBF: $H \rightarrow \tau\tau$

 $m_{\tau\tau} = m_{ll} / \sqrt{x_{\tau 1} x_{\tau 2}}$

Combinando i vari canali ($H \rightarrow \tau \tau$) si ottiene una significanza ~5 σ a L=30fb⁻¹ nel range 115-140 GeV

Le sistematiche sul fondo per $H \rightarrow \tau \tau$

Importante la conoscenza di $Z \rightarrow \tau\tau$: per M_H <125 GeV si usa il picco $Z \rightarrow \tau\tau$, per MH>125 GeV si usano le sidebands ma contano le code di $Z \rightarrow \tau\tau$ (fondamentale la risoluzione in E_T mancante) Si stima una incertezza dopo la normalizzazione dell'ordine del 10%

Le proprietà del Higgs (1)

Evelin Meoni, Universita' della Calabria

44

Le proprietà del Higgs (3)

Il MS prevede un Higgs Spin=0 e CP=+1

E' possibile testare l'ipotesi di spin zero da eventi VBF H \rightarrow WW \rightarrow l vlv: Se l' Higgs ha spin zero i 2 leptoni tendono ad essere emessi nella stessa direzione, una buona variabile è l'angolo di separazione nel piano trasverso $\Delta \phi$

Le proprietà del Higgs (4)

Si assume che: •L' Higgs e' un oggetto scalare pari •Che si accoppia solo a particelle MS •Che non si accoppia con i fermioni leggeri

I processi di produzione e decadimento possono essere espressi in funzione delle costanti di accopiamento

 $\frac{g_Z^2}{g_W^2}, \frac{g_\tau^2}{g_W^2}, \frac{g_t^2}{g_W^2} \text{ possono essere misurati con una precisione} \\ \text{dal 15% al 50% (M_H > 125 GeV, L = 30 fb^{-1})}$

della

I principali canali di decadimento

$H^{\pm} \rightarrow \tau \nu$, $\tau \rightarrow had + X$

Evelin Meoni, Universita' della Calabria

50

Un esempio : $H \rightarrow \gamma\gamma$ (2)

E' richiesta una percentuale <0.3% Di canali morti

Evelin Meoni, Universita' della Calabria