

Ricostruzione e identificazione di elettroni e fotoni in ATLAS e CMS

- Introduzione: i calorimetri elettromagnetici e prestazioni su fascio
- Ricostruzione dei segnali e clustering
- Problematiche di ricostruzione sperimentale: conversioni e bremsstrahlung
- Calibrazione con eventi di fisica e (pre)commissioning

- Benchmark: $H \rightarrow \gamma \gamma$ (accessibile per $M_H \leq 150$ GeV):
 - S=N_S/ $\sqrt{N_B} \alpha \sqrt{L}/\sqrt{\sigma(M)}$
 - Per S~5 L=20fb⁻¹ σ (M)/M~1% per M_H=110 GeV
- σ(M) dominata da risoluzione sperimentale: Contributi alla risoluzione in massa:

$$\frac{\sigma_M}{M} = \frac{1}{2} \left(\frac{\sigma(E_1)}{E_1} \oplus \frac{\sigma(E_2)}{E_2} \oplus \frac{\sigma_{\theta}}{tg(\theta/2)} \right)$$

 Assumendo la parametrizzazione standard per σ(E)/E:

$$\frac{\dot{\sigma}(E)}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

- termine stocastico: a < 5-10% GeV^{1/2}
- temine di noise: b< 200-300 MeV</p>
- termine costante: c< 0.5-0.7%</p>

- Misura direzione dello sciame:
 - σ(θ)≈50 mrad/√(E/GeV)

- Inoltre:
 - Ricostruzione in un ampio spettro di energia (da pochi GeV per fisica del B e soft-electron tagging alla scala del TeV per nuova fisica)
 - Elettroni e fotoni utilizzati come canali di trigger ad LHC
 - Separazione eccellente γ/jet (~10³), in particolare γ/π⁰, per π⁰ isolati di alto p_T
 - Separazione e/jet eccellente (~10⁵)
 - Necessario un ampio intervallo accettanza

- Calorimetro a campionamento Pb-LAr : intrinsecamente rad-hard
- 3 sampling longitudinali : strips, middle, back
- Posizionato al di fuori del solenoide
- Granularità molto fine in η delle strips:
- Presampler ($\eta < 1.8$)

L. Carminati – P. Meridiani

• ~ 200000 canali !!

Sampling	Granularity ∆η x ∆φ	Depth	
Presampler	0.025 X 0.1		
Strips	0.003 X 0.1	5X ₀	
Middle	0.025 X 0.025	16X ₀	
Back	0.05 X 0.025	2 to 10 X ₀	

- Goal risoluzione: a=10%, c=0.7%
- <u>Ermeticità:</u> la geometria con elettrodi e assorbitori piegati a 'fisarmonica' garantisce una copertura totale senza zone morte nella coordinata azimutale
- <u>Copertura in eta:</u>
 - 0 < |η| < 1.475 Barrel</p>
 - 1.375 < |η| < 3.2 Endcap
- Zone morte:
 - •1.4 < $|\eta|$ < 1.55 : Transizione barrel / endcap

<u>Calibrazione stabile</u>: il calorimetro ha ~ 200000 canali di lettura.
 Ogni canale viene calibrato mediante una rete di calibrazione elettronica

ATLAS: prestazioni su fascio

- Sampling term (a) ~ 10%
- Termine costante (c) < 0.5% (locale)
- Termine rumore (b) < 250 MeV

La linearità del calorimetro è stata misurata :

✓ ±0.25% E>10 GeV

 $\checkmark \pm 0.1\% E > 40 \text{ GeV}$

- Entro le specifiche
- Buon accordo dati simulazioni montecarlo (Geant4)
- Lo schema di calibrazione descritto ottimizza la risoluzione del calorimetro preservando la linearità!

L. Carminati – P. Meridiani

 Test su fascio di 3 moduli endcap e 2 moduli barrel di produzione

	P13	P15
RMS	0.57%	0.64%

	ECC0	ECC1	ECC5
RMS	0.58%	0.53%	0.55%

• Uniformità locale misurata in linea con le attese. Termine costante globale ~0.7% raggiungibile

L. Carminati – P. Meridiani

ATLAS: stato della costruzione

L'assemblaggio del calorimetro elettromagnetico barrel è terminata.
I test di funzionalità (elettronica, HV, cooling systems....)

- 31 canali con problemi (0.03%)
- 4 settori ($\Delta\eta x \Delta \phi = 0.2x0.2$) di HV con 1 half gap che non tiene la tensione (0.8% dell'accettanza) ma nessuna zone morta
- Il barrel verrà calato nel pit per la fine di ottobre
- Un endcap terminato: test di funzionalità in avvio
- Il secondo endcap sarà pronto per dicembre

- Omogeneo a cristallo:
 - Tungstato di piombo: PbW0₄
- ≈75000 cristalli
- all'interno del solenoide:
 - campo magnetico: B=4 T
- Detector compatto:
 - 25 X₀ in 22 cm
- Alta granularita':
 - contenimento laterale: R_{Molière} = 22 mm
 - faccia del cristallo: 22 mm (1 R_{Molière}) x 22 mm
- Cristallo PbW0₄:
 - veloce: 80% della luce emessa dal cristallo in 25 ns
 - radiation hard
- Preshower :
 - endcap: 1.653<|η|<2.6
 - migliorare separazione γ/π^0

- <u>Goal risoluzione</u>: a=2.5%, c=0.5%
- Ermeticità: garantita da geometria non pointing (3° in $\eta \in \varphi$)
- <u>Copertura in η</u>:
 - 0 < |η| < 1.479 Barrel
 - 1.55< |η| < 3 Endcap
- Readout:
 - APD Barrel
 - VPT Endcap

- Monitoring laser:
 - PbWO₄ perde trasparenza (<3-4%) quando irraggiato</p>
 - Segnale laser permette di seguire la calibrazione del singolo canale (<0.2%)

CMS: alcuni contributi alla risoluzione

- Per la fine del 2004 mezzo barrel (18 SM) sarà completato
- Integrazione dell'elettronica iniziata nel Luglio 2004
- Fondamentale la produzione dei cristalli

- Entrambi gli esperimenti adottano un ADC a campionamento ($\Delta t = 25 \text{ ns ATLAS}$: 5 samples CMS: 10 samples)
- Ricostruzione basata su tecniche di digital filtering:

- La stima dei pesi ottimali richiede conoscenza della forma esatta del segnale
 - ATLAS: rete di calibrazione elettronica dovrebbe garantire la conoscenza del segnale proveniente dalla vera ionizzazione, nonché un monitoring continuo del guadagno dell'elettronica [μA/ADC]
 - continuo del guadagno dell'elettronica [µA/ADC]
 CMS: ha usato fino ad ora con buoni risultati una rappresentazione analitica della forma del segnale; si sta comunque valutando la possibilità di utilizzare direttamente la forma del segnale misurata nei dati

Clustering

- Il segnale rilasciato da una singola particella coinvolge in generale un numero n≥1 di canali $E_{e/\gamma} = \sum E_i^{CAL}$
- Compromesso tra massimizzazione del contenimento e minimizzazione del noise (anche fisico, non solo elettronico)
- Al test beam (facile) si usa tipicamente una matrice di canali di dimensione fissa intorno al segnale maggiore (es. 5x5,3x3) simmetrica nelle due direzioni eta e phi
- La situazione è più complessa nell'esperimento a causa del materiale di fronte al calorimetro (anche > 1X₀) ed al campo magnetico
- Diversi approcci possibili:
 - Matrici asimmetriche
 - Algoritmi dinamici che cercano di modellarsi sull'effettiva distribuzione del deposito di energia
- In generale gli algoritmi vanno ottimizzati separatamente per elettroni e fotoni

e loosing less than F

0.4

CMS

R<90cm

Entire volume

elettroni

- Sofisticati e precisi sistemi di tracking:
 - ATLAS: pixel, microstrips di Si, straw tubes (con funzionalita' TRD)
 - CMS: pixel e microstrips
- Ma consistente quantità di materiale che si traduce in:
 - conversione di fotoni (~50% dei γ dall'H converte in r<80 cm)
 - bremsstrahlung di elettroni

- <u>Sliding window algorithm</u> si usa una finestra di dimensione fissa (asimmetrica, maggiore in ϕ) ottimizzata per diverse categorie di particelle
- <u>Topological clustering algorithm</u> (in fase di perfezionamento) : i cluster sono costruiti raggruppando celle che sono 'topologicamente' neighbors
- •Le celle vengono aggiunte secondo certe regole:
 - SeedThreshold: |E/σ_{noise}|>T_{seed} : solo celle sopra questa soglia originano un cluster
 - CellThreshold: |E/onoise|>Tcell: solo celle sopra soglia vengono sommate
 - NeighborThreshold: |E/σ_{noise}|>T_{neighbor}: solo per le celle soglia si interrogano le vicine
- Topological cluster splitter: separa cluster attorno ad eventuali massimi locali

<u>Calibrazione dell'energia</u>: frazione di sampling e leakage

 Varie strategie sono state sperimentate.
 Approccio più promettente: pesare presampler ed accordion con la propria sampling fraction + correzione per il leakage event-based

 Correzioni per il leakage indipendenti dalla particella se parametrizzate in funzione della shower depth.

- <u>Correzione per contenimento trasversale</u>
 Per lo sliding window algorithm:
 - La dimensione ottimale dipende dal tipo di particella, dall'energia e da η Per il topological cluster:
 - più complesso, le correzioni dipendono dalle soglie.... (in sviluppo)

ATLAS: risoluzione in energia

- prestazioni analoghe anche con fotoni
- Scelta di CMS: cluster di cluster = Supercluster
 - algoritmi di clusterizzazione dinamica
- Si sfrutta la proprietà che il campo magnetico di 4T distribuisce soprattutto in phi sia l'energia persa per bremsstrahlung nel caso di elettroni che le conversioni nel caso di fotoni

CMS ha sviluppato 2 algoritmi di clusterizzazione

- "Hybrid Algorithm":
 - ottimizzato per il barrel (sfrutta la geometria η η -
- "Island Algorithm":
 - ottimizzato per gli endcap (considera anche l'energia rilasciata nel preshower ~3X₀)
- Rescaling dell'energia in funzione del numero di cristalli del SC

 Altre correzioni attualmente in fase di studio (differenti nel caso di elettroni e fotoni (convertiti e non))

L. Carminati – P. Meridiani

CMS: risoluzione in energia

CMS: ricostruzione di posizione nel calorimetro

L. Carminati – P. Meridiani

Bassa luminosità:

- Possibilità di combinare in η le misure delle strip e del middle+ la misura del vertice dall' Inner Detector (σ_z=40 μm)
- Alta luminosità: -
 - Nessun uso dell'ID. Solo uso del calorimetro (ruolo fondametale delle strips)
- Nel caso di conversioni con R<40 cm e |Z| <
 220 cm direzione ricostruita con il tracker.

- CMS ha bisogno della misura del vertice primario per misurare la direzione dei fotoni
 x²/ndf 22.61/2 Constant 38.94 ± 2.29
- Negli eventi H→γγ a bassa luminosità il vertice può essere identificato con efficienza del 90%
- Ad altà luminosità l'efficienza di identificazione scende intorno al 60%

Se ci sono conversioni il vertice può essere ricostruito a partire dalle

- Ottimizzazione ricostruzione tracce per elettroni:
 - varie tecniche: e.g., inserire il baricentro del cluster del calorimetro come un punto ulteriore nel fit della traccia

• Si cerca un seed nei layers di pixel:

- si propaga la posizione del cluster calorimetrico fino ai layers di pixel
- si cercano hits compatibili (la maggior parte del materiale si trova dopo il pixel detector)
 - Gli elettroni hanno bassa probabilità di fare bremstrahlung ed i fotoni convertono principalmente dopo
- Garantisce anche reiezione da jets mantenendo un'alta efficienza (> 15 per ε=95%)
- A questo livello viene anche separato lo stream di elettroni da quello di fotoni

- Pixel seed utilizzato per iniziare la ricostruzione di traccia
- Kalman Filter trattando l'elettrone come una particella senza bremsstrahlung
 - Si richiede nel track building χ²<5 e N_{HIT}≥4 per la traccia ricostruita
 - lo scopo è quello di ricostruire l'impulso iniziale dell'elettrone
 - Probabilmente si può fare di meglio. Altri algoritmi in fase di studio ma ancora da ottimizzare (Gaussian Sum Filter)
- Selezione di elettroni:
 - Tagli su E/P
 - Δη cluster traccia
 - Isolamento con il tracker

La separazione y/jet è effettuata su informazioni calorimetriche

- Rapporto tra energia nel calorimetro elettromagnetico e leakage nel calorimetro adronico
- Sviluppo trasverso dello sciame principalmente nel secondo sampling del calorimetro elettromagnetico.

Un setup particolare è stato realizzato

 Fotoni non convertiti: rete neurale che usa gli input della shower shape nel calorimetro elettromagnetico (barrel) e nel preshower (endcap)
 Eff. Endcap = 90%

 Fotoni convertiti: vengono utilizzate le informazioni del tracker. Work in progress

- Il maggiore contributo al termine costante è dato dall'intercalibrazione
- Tool di calibrazione è rappresentato dagli eventi di fisica (calibrazione in situ)
- Principali canali usati da entrambi gli esperimenti: Z → e+ e- (~2 Hz bassa lumi), W → ev (~20 Hz bassa lumi)
- Problema per la calibrazione in situ: effetti del materiale di fronte al calorimetro.
- (Pre)Commissioning: cosmici, beam halo...

Pre-collision data : primi idee sul commissioning del calorimetro elettromagnetico con muoni (cosmici).

- 3 mesi di data taking con efficienza al 50 % danno:
- 100 μ per cella middle con E_{cell} > 100 MeV per -1 < η < +1 per il 70 % della copertura in ϕ
 - ~ 1 ns di risoluzione sul timinig del calorimetro
 - + ~ 0.5 mm di precisione sulla posizione relativa del barrel nelle due direzioni ($\eta/\phi)$
 - ~ 0.5 % check dell'uniformità della calibrazione vs η : 40K eventi integrati in ϕ (non si tiene conto di eventuali disuniformità in ϕ)
- In fase di studio la possibilità di usare muoni dal beam halo per gli endcaps

Rate di muoni cosmici con |z| < 30cm e E_{cell}>100 MeV per cella middle dell'ECAL vs η , ϕ

• Uniformità entro regioni $\Delta \eta \ x \ \Delta \phi = 0.2 \ x \ 0.4$ (totale 440 regioni) aspettata ~ 0.5%

• L'intercalibrazione tra varie regioni ('long range') può essere effettuata con il canale $Z \rightarrow e^+e^-$, per raggiungere un termine constante globale entro 0.7%.

• Risultati in full simulation (applicando una "decalibrazione" dell'1.5%) indicano la possibilità di ottenere la precisione necessaria in pochi giorni a bassa luminosità

Alcuni supermoduli (1SM= 1700 cristalli) saranno precalibrati su fascio (prec. <2%)

Per tutti i canali è possibile ricavare una intercalibrazione dalle misure di LY sui cristalli corrette per guadagni dell'elettronica e dei fotorivelatori

Confronto tra intercalibrazione al test beam e misure di laboratorio ha mostrato che è possibile raggiungere una precisione intorno al 4%

L. Carminati – P. Meridiani

- •Strategia di calibrazione in fase di studio su full simulation.
- Intercalibrare cristalli allo stessa η sfruttando la simmetria del deposito di energia in ϕ in eventi minimum bias. Precisione massima intorno all'1-3% (variabile in η) in poche ore di presa dati, limitata dalla non omogeneità del materiale in ϕ
- Le diverse regioni η possono essere intercalibrate tramite gli elettroni provenienti da $Z \rightarrow e^+ e^-$ con la possibilità di fissare la scala di energia.

•Elettroni del W utilizzati per intercalibrare il singolo canale al fine di raggiungere il goal dello 0.5%

•Altri canali attualmente in fase di studio possono essere utilizzati come tool di controllo-complementari (Es. $\eta^0 \rightarrow \gamma \gamma$)

•CMS ha da poco iniziato a pensare ad una strategia di precalibrazione (precommisioning) con un particolare set-up dedicato ai cosmici

- ATLAS e CMS: continuo lavoro di ottimizzazione per il raggiungimento degli obiettivi di disegno dei rispettivi calorimetri
- Prestazioni su fascio di test in accordo con i valori di disegno
- Il materiale di fronte al calorimetro può sensibilmente deteriorare le prestazione dei calorimetri. Algoritmi per minimizzare gli effetti attualmente in fase di studio
- Ottimizzazione della ricostruzione effettuata su dati simulati. Nei confronti diretti effettuati tra dati e simulazione (solo al test beam!) l'accordo è in generale buono
- Obiettivi fondamentali per il futuro: costruzione/commissioning, calibrazione e comprensione degli effetti dovuti al materiale di fronte al calorimetro

BACKUP

LAS: Ricostruzione del segnale e problematiche di readout

• Il guadagno di ogni cella viene calibrato iniettando un segnale di calibrazione che simula quello di fisica (~0.2% precisione)

e diverso segnale iniettato)

47 cm

800

t (ns)

700

100

200

300

500

600

• The combination of S1 and S2 η position measurements with longitudinal shower barycentres gives an independent angular information...

• H $\rightarrow \gamma\gamma$ vertex reconstructed with 20-30 mm accuracy • LHC interaction point : $\sigma_z \sim 56$ mm

$H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^{(*)} \rightarrow 4e$

• <u> $H \rightarrow \gamma \gamma$ </u>:

- 110 Gev: σ_M=1.37 GeV (σ_M/M=1.2%) ad alta L con una accettanza dell'80% nel mass bin (±1.4σ)
- 110 Gev: σ_M=0.89 GeV (σ_M/M=0.8%) ad alta L con una accettanza del 73% nel mass bin (± 1.9 GeV)

• <u>H→4e:</u>

- 130 GeV: σ_M=1.54 GeV (σ_M=1.81 GeV) a bassa (alta) L con una accettanza dell'83(85)% nel mass bin (±2σ)
- 130 GeV: σ_M =1.29 GeV (σ_M/M = 1.0%) ad alta L con una accettanza del 68 % nel mass bin (±2 σ)

Selection	2*10 ³³ cm ⁻² s ⁻¹	Rates (Hz)
Electron	e25i, 2e15i	~40
Photon	γ60i, <mark>2</mark> γ20i	~40
Muon	μ20i, 2μ10	~40
Jets	j400, 3j165, 4j110	~25
Jet & E _T ^{miss}	j70 + xE70	~20
tau & E _T ^{miss}	τ35 + xE 45	~5
b-physics	$2\mu 6$ with $m_B / m_{J/\psi}$	~10
Others	pre-scales, calibration,	~20
Total		~200

	2x10 ³³ cm ⁻² s ⁻¹		10 ³⁴ cm ⁻² s ⁻¹			
	Signal	Background	Total	Signal	Background	Total
Single electron	<i>W→e</i> v: 10Hz	π^{\pm}/π^0 overlap: 5Hz π^0 conversions: 10Hz $b/c \rightarrow e$: 8Hz	33Hz	<i>W→e</i> v: 35Hz	π^{\pm/π^0} overlap: 15Hz π^0 conversions: 19Hz $b/c \rightarrow e$: 6Hz	75Hz
Double electron	<i>Z→ee</i> : 1Hz	~0	1Hz	$Z \rightarrow ee: 4Hz$	~0	4Hz
Single photon	2Hz	2Hz	4Hz	4Hz	3Hz	7Hz
Double photon	~0	5Hz	5Hz	~0	8Hz	8Hz
TOTAL:			43Hz			94Hz

Un setup particolare è stato realizzato sulla linea di fascio H8 per produrre γ di bremsstrahlung:

Simulazione della calibrazione in situ :

- Il calorimetro è stato diviso in regioni ($\Delta \eta \ x \ \Delta \phi = 0.2 \ x \ 0.4$) e un fattore di 'decalibrazione' α_i è stato creato per ogni regione con 1.5% rms.
- Per gli eventi con elettroni nelle regioni (i,j) i coefficienti di (de)calibrazione possono essere ricavati da un fit della distribuzione ricostruita sulla lineshape di riferimento
- Recenti test effettuati al 'particle level' e in fase di finalizzazione in full simulation (~ 150k evts) :
 Il goal di un global constant term ~0.3 può essere ottenuto in alcuni giorni di presa dati a bassa luminosità.

(Richiesto uno studio che includa più dettagliatamente i principali effetti sperimentali)

Precisione con eventi minimum bias dipendente dalla pseudorapidità a causa della non omogeneità del materiale in phi

(dovuta al non contenimento del cluster ma dipendente dalla brem!)

L. Carminati – P. Meridiani

- Richiede la misura del tracker.
- Effetti sistematici dovute alla bremmstrahlung: variazione di E/p con η
- Tempi di calibrazione dipendenti dai tagli sulla bremmstrahlung: compromesso tra efficienza e risoluzione
- Possibile strategia: calibrare prima regioni in piccoli intervalli di η (stesso materiale) con loose cuts e poi intercalibrare le regioni tra di loro con tagli più stringenti.

L. Carminati – P. Meridiani

- Conversioni a basso raggio/piccola z le piu' pericolose
- Individuare le conversioni da fit tracce tracker:
 - R<40cm: pixel+strips+TRT</p>
 - R>40cm: usa tracking ad hoc nel TRT
- Efficienza complessiva : ~ 86 % (piatta in P_T)
- Usare un cluster piu' largo per γ convertiti:
 - ηxφ: 3x7 celle (γ non convertiti: 3x5 celle)

