

Lucio Rossi CERN - Accelerator Technology Dept.

Napoli, 15 Ottobre 2004

Un tunnel da 27 km...

I grandi collisori

Napoli, 15 Ottobre 2004

4

Momento & energia stoccata per i grandi collisori

Napoli, 15 Ottobre 2004

Circumference	26.7	km
 Beam energy at collision 	7	TeV
 Beam energy at injection 	0.45	TeV
 Dipole field at 7 TeV 	8.33	Т
Luminosity	1034	cm ⁻² .s ⁻¹
Beam current	0.56	А
 Protons per bunch 	1.1x10 ¹¹	
Number of bunches	2808	
 Nominal bunch spacing 	24.95	ns
 Normalized emittance 	3.75	μm
 Total crossing angle 	300	μ rad
 Energy loss per turn 	6.7	keV
 Critical synchrotron energy 	44.1	eV
 Radiated power per beam 	3.8	kW
 Stored energy per beam 	350	MJ
 Stored energy in magnets 	11	GJ
 Operating temperature 	1.9	К

Costi per area

Numero e funzioni dei magneti /pe Number Function

Туре	Number	Function
MB	1232	Main dipoles
MQ	392	Arc quadrupoles
MBX/MBR	16	Separation & recombination dipoles
MSCB	376	Combined chromaticity & closed orbit correctors
MCS	2464	Sextupole correctors for persistent currents at injection
MCDO	1232	Octupole/decapole correctors for persistent currents at injection
MO	336	Landau damping octupoles
MQT /MQTL	248	Tuning quadrupoles
MCB	190	Orbit correction dipoles
MQM	86	Dispersion suppressor & matching section quadrupoles
MQY	24	Enlarged -aperture quadrupo les in insertions
MQX	32	Low-beta insertion quadrupoles

LHC: componenti e scala industriale (cortesia di Philippe Lebrun)

ATLAS-CMS Napoli, 15 Ottobre 2004

90 contratti principali nel mondo

Napoli, 15 Ottobre 2004

Lucio Rossi

Il lungo cammino verso la qualità di campo

Caratteristiche cavo superconduttore LHC

Lucio Rossi

ATLAS-CMS Napoli, 15 Ottobre 2004

Dalla billetta assemblata al cavo finito

Lucio Rossi

ATLAS-CMS Napoli, 15 Ottobre 2004

Superconducting cable 1

Principali proprietà cavi

Gestione di una complicata catena di forniture

<u>Benefici</u>

Rischi e svantaggi

- Omogenietà dei parametri
- QA
- Economia di scala
- Sicurezza della fornitura
- Ritorno bilanciato

- Responsabilità interfaccia
- Lavoro addizionale
- JIT breakdown
- Transporti, storage & logistica

Produzione bobine

assemblaggio massa fredda

ALSTOM

ATLAS-CMS Napoli, 15 Ottobre 2004

Lucio Rossi

Dipoli (masse fredde)

Lucio Rossi

ATLAS-CMS Napoli, 15 Ottobre 2004

20

12 banchi di test criogenici 12 magneti/settimana (15 nel 2005?)

1954-200 CERN

Quench per arrivare a 8.33 T 1954-200 secondo ciclo termico (su ca.360 dipoli)

CERN

Napoli, 15 Ottobre 2004

Dipoli: bending strength

E. Todesco

ATLAS-CMS Napoli, 15 Ottobre 2004

Ottenere tecnologia avanzata dall'Industria

 Specifiche tipo "built-to-print" and "built to process", dove il laboratorio mantiene la proprietà intellettuale

– Magneti Superconduttori

• Specifiche funzionali o "chiavi in mano"

- Linea Criogenica

I refrigeratori (a 4.2K) sono OK

AIR LIQUIDE

Otto impianti in tutto 140 kW at 4.5 K ~40 000 l/h di elio liquido

32 MWe

Lucio Rossi

ATLAS-CMS Napoli, 15 Ottobre 2004

LINDE

25

ATLAS-CMS Napoli, 15 Ottobre 2004

1st stage

The four stages

Lucio Rossi

Camere a vuoto per i criostati

- 1720 power converters
 - high-current (60 A to 12 kA)
 - high-precision (few ppm stability & reproducibility)
 - large dynamic range
 - 1-quadrant, 2-quadrant and 4-quadrant
 - high reliability (MTBF ~ 100 000 h)
 - tracking from sector to sector
- Environmental constraints
 - underground => compactness, efficiency (>80 %)
 - serviceability
 - EMC
 - radiation tolerance (1 Gy/yr for converters in tunnel)

Modular 6 kA, 8 V converter

1954-2004

CERN

Current tracking performance

13 kA HTS current leads

Lucio Rossi

ATLAS-CMS Napoli, 15 Ottobre 2004

ritardo dell'installazione QRL: modifiche design validate CERN ripara e reinstalla il primo ottante

ATLAS-CMS Napoli, 15 Ottobre 2004

Linea iniezione 5.6 km, 700 magneti

V. Mertens

Lucio Rossi

ATLAS-CMS Napoli, 15 Ottobre 2004

34

Linea iniezione TI8: terminata

Ciclo LHC

Per arrivare al fascio

Operational Phases

- Hardware Commissioning
- Hardware commissioning with power
- Cold checkout
- Very cold checkout
- Initial commissioning with beam
- Initial commissioning for physics
- Re-commissioning after shutdown
- Commissioning with lons
- First year physics
- Nominal Physics with protons
- Ultimate physics with protons
- Nominal physics with lons
- TOTEM
- Machine development
 Lucio Rossi

- Initial commissioning with beam
 - Establish circulating beam
 - First pass BI commissioning
 - Commission ramp single beam
 - Commission squeeze single beam
 - 2 beam operation
 - etc. etc.

beam commissioning: Una sfida complessa

There is a lot of stored energy in the nominal beams

- 7TeV, N_b = 2808, i_b = 1.15 10^{11} , (ϵ = 3.75 $\mu m,\,\beta^*$ = 0.55m)
- Stored energy ~ 360MJ per beam
 - \sim 0.7MJ melts 1kg copper
 - \sim 100 \bullet more stored energy than SPS / Tevatron / HERA

 \sim 1000 \bullet more energy density than SPS / Tevatron / HERA

La potenza del fascio LHC

La densità di energia trasversale è una misure del potenziale danneggiamento ...

... e proporzionale alla luminosità

In termini di danneggiamento LHc rappresenta un passo di 3 ordini di grandezza!

Lucio Rossi

1954-2004

CERN

Filosofia bilanciata tra necessità esperimenti e macchina

Maximize integrated luminosity

Minimize event pile-up at the start (to event + 2)

Avoid quenches (and damage)

- Reduce energy to get more margin
 - Against transient beam losses
 - Against magnet operating close to quench limit
- Reduce total current to reduce stored beam energy
 - Lower i_b
 - Fewer bunches (we have 25ns 75ns and others available)
- Higher β^* to avoid problems in the (later part of the) squeeze

Alta luminosità: 39 batch di 72 bunch per ring = 2808 bunch (+756 vuoti)

Lucio Rossi

Primo(i) anno(i) di fisica: limitare il beamassi power massimizzando l'intensità

I 1188 spazi vengono dati come 936 bunch per ring (quindi i vuoti sono 252)

Lucio Rossi

Ma I primi mesi...

Con 43 bunch solamente:

frontali

Lucio Rossi

Energy & transient beam losses

Quench se si passa T_c

- 5 10⁶ protoni lo fanno a 7 TeV
- Perdite a:
- Iniezione e rampa
- 7TeV squeeze
- 7TeV adjustments (collimators)

Piu' margine a **6 TeV** Meno energia depositata a 6 TeV ⇒guadagno piu' che fattore 2 in energia

Lucio Rossi

Altre considerazioni per stare bassi

Electron cloud

- i_b < 35% nominal for 25ns spacine
- $-i_{b} \sim nominal for > 50 ns$

- With lower currents in mind, a number of machine systems will be staged
- Only 8 of 20 beam dump dilution kickers initially installed
- Collimators (robustness, impedance and other issues)

Start simple, introduce the complexity (and the risk) in a controlled way

Emittance preservation in LHC will need learning

– Assume ϵ of 3.75 μm at top energy also for reduced i_b

Lucio Rossi

Start high energy operation at 6TeV or maybe 6.5TeV Move to 7TeV whenever machine stability permits it (1 step)

Staged approach to get to stable 25ns operation

- 1. Commissioning and pilot physics run with few bunches
 - No parasitic bunch crossings
 - Machine de-bugging without crossing angle
- 2. 75ns operation
 - Establish multi-bunch operation
 - Relaxed machine parameters (squeeze and crossing angle)
- 3. 25ns operation

6 month shutdown

a) Phase I collimators + partial beam dump

b) Phase II collimators + full beam dump

Proposal for breakdown of a year

Year = 16 weeks Shutdown + 4 weeks MCO + 32 weeks Operation Operational period = $_1$ { 25 days Beam period + 3 days Technical Stop }₈ Beam period = 1 day Setting up + 4 days MD(16%) + 20 days Physics(80%)

First beam period will always be for setting up + a little physics Results in around 140 days for physics To be shared between proton running, ion running and TOTEM

(le slides su operazione e start up sono cortesia di <u>Roger Bailey</u>, <u>Paul Collier</u>, <u>Rudiger Schmidt</u>, AB dept.)

Planning

- In giugno 2004: planning che prevedeva fine dell'hardware commissioning in estate 2007 con scenario non limitato in risorse (2-3 fronti di installazione e test)
- Da allora picco di crisi della QRL: 4 mesi ulteriori di ritardo
- CERN sta prendendo misure per recuperare e mantenere il 2007 come anno di primo fascio
- La crisi della QRL è "quasi" passata. CERN installerà un ottante
- Basterà per avere il (un) fascio nel 2007? Questo è l'impegno!