Gli High Level Triggers in ATLAS e CMS

II Workshop sulla fisica di ATLAS e CMS Napoli, 14 Ottobre 2004

<u>Marco Zanetti</u> INFN Padova – CMS Alessandro Di Mattia INFN Roma 1 - ATLAS

Overview

✓ Introduzione

- ✓ Architetture di HLT/DAQ
- Algoritmi di ricostruzione di HLT e loro prestasioni
- ✓ Triggers:
 - Inclusivi
 - Esclusivi
 - Pre-scale, calibrazione, monitor
- Considerazioni sui primi giorni di run di LHC

High Level Trigger: Introduzione

✓ CMS ed ATLAS sono rivelatori completamente diversi che studiano la stessa fisica con le stesse problematiche

✓ Una fra tutte, il riconoscimento e la selezione in tempo reale di un evento interessante su $\sim 10^7$

✓ Il primo passo e' il I Livello di Trigger. Non ci sono differenze concettuali tra ATLAS e CMS:

- algoritmi implementati su hardware custom;
- piccola frazione delle informazioni sull'evento disponibile;
- massima rate in output = 100kH;

✓ Il compito degli High Level Trigger e' di raffinare la selezione fino ad una rate di O(100) Hz, con grande efficienza per gli eventi di segnale

High Level Trigger: Introduzione

✓ 100 Hz a 10^{34} cm⁻¹s⁻¹ (L nominale di LHC) corrispondono a 10 nb ~ σ (pp->W⁺->µ⁺ v)

Gli HLT svolgono la prima vera analisi

La differenza e' che viene eseguita in tempo reale

✓ Vincoli per gli algoritmi di ricostruzione sia per il tempo di processamento che per la quantita' di dati a disposizione

✓ Non si puo' ripetere. Un evento una volta scartato non si recupera piu'

Selezioni di Fisica di HLT

✓ Alla base della selezione di HLT sta la precisa ricostruzione degli oggetti fisici (e, γ , μ , jet, b-jet, ME_t, τ).

Segnatura	Esempi di canali interessanti		
Flottroni	Higgs (SM, MSSM), nuovi bosoni di gauge, extra dimensions, SUSY, W, top:		
Elettion	$H \rightarrow 4e, H \rightarrow eevv, H \rightarrow eejj, W \rightarrow ev, Z \rightarrow ee, H/A \rightarrow tt, ttH \rightarrow ttbb$		
Fotoni	Higgs (SM, MSSM), extra dimensions, SUSY: $H \rightarrow \gamma \gamma$, h/A $\rightarrow \gamma \gamma$		
	Higgs (SM, MSSM), nuovi bosoni di gauge, extra dimensions, SUSY, W, top		
Muoni	H→4μ, H→μμνν, H→μμjj, H/A→μμ W→μν, Z→μμ, H/A→tt, ttH →ttbb		
	Decadimenti rari del b: $B \rightarrow \mu\mu X$, $B \rightarrow J\Psi(\Psi')X$		
Jets	SUSY, compositeness, risonanze: qq, qg, gg, W→jj,		
Jet+missing E _T	SUSY, leptoquarks: $q+g\rightarrow LQ + \nu \rightarrow jl\nu$		
Tau+missing E _T	Extended Higgs models (e.g. MSSM), SUSY: $H^+ \rightarrow \tau \nu$, $H \rightarrow \tau \tau$, $W \rightarrow \tau \nu$		

✓ La selezione degli eventi si svolge in 2 o piu' fasi che gestiscono una rate sempre minore e un quantita' di informazione sempre maggiore (e.g. hits nel tracciatore) consentendo un ricostruzione sempre piu' accurata.

Richieste Generali

✓ <u>Flessibilita'</u>. Le prestazioni e le condizioni di lavoro dell'acceleratore e del rivelatore e la fisica delle interazioni p-p a 14 TeV sono variabili altamente poco prevedibili.

✓ Robustezza. Gli algoritmi non devono dipendere in maniera critica dalle variazioni delle costanti di calibrazione e allineamento

✓ Rapida reiezione. Gli eventi non passanti le selezioni devono essere scartati dal flusso di dati il prima possibile

✓ Inclusivita' delle selezioni. Per avere massima efficienza per fenomeni di nuova fisica (potenzialmente ignota)

✓ Validazione con i dati. Deve essere possibile valutare l'efficienza di selezione senza affidarsi alle simulazioni

✓ Sofisticatezza. La ricostruzione on line deve essere il piu' simile possibile a quella offline. Ogni evento deve inoltre essere etichettato per facilitarne l'analisi successiva

Architettura: ATLAS

3 Livelli Fisici

High Level Triggers (HLT) Software triggers

LEVEL 2 TRIGGER

- Regions-of-Interest "seeds"
- Full granularity for all subdetector systems
- Fast Rejection "steering"
- O(10 ms) latency

EVENT FILTER

- "Seeded" by Level 2 result
- Potential full event access
- Offline-like Algorithms
- O(1 s) latency

Architettura: ATLAS

Concetto di RoI (Region of Interest)

- Level-1
 - Uses only coarse calorimeter and muon spectrometer data
 - Local signatures dominate selection
 - No matching of different detectors
- RoI
 - The <u>Region of Interest</u> is the geometrical location of a LVL1 signature (identified high p_T object)
 - Allows access to local full granularity data of each relevant detector
 - <RoI/Level-1 accept> ~ 1.6
- Level-2
 - Seeded with RoI
 - Matching of full detector data within RoI
 - Uses ~ 2% of the full event data for decision

Architettura: CMS

- ≈ Tbyte/day
- ≈ Thousands

Architettura: CMS

Algoritmi sviluppati su una unica farm di processori

Le sfide:

✓ Leggere dai front end e fornire alla farm online ~1MB di dati a 100 kHz. Banwidth ~ 1 Terabit/s

✓ Processare 1MB a 100 kHz in un tempo O(100) ms. Potenza di calcolo ~10⁶ SI95 (O(10000) Pentium3 1GHz)

Scommessa sul progresso tecnologico

I vantaggi:

- ✓ Completa Flessibilita' nell'hardware, nel software e nel computing
- ✓ Scalabilita' del sistema. Si investono le risorse solamente quando necessarie
- ✓ Solo prodotti commerciali => possibilita' di sfruttarne i progressi, supporto

✓ Tutta l'informazione dell'evento disponibile, nessun bias introdotto da un livello intermedio

Le caratteristiche degli algoritmi:

✓ Per rigettare gli eventi il prima possibile, suddivisione interna in livelli intermedi: L2, L2.5, L3 ... concettualmente possible un continuo di selezioni

✓ Regionalita'. La ricostruzione avviene solo dove suggerito dal livello precedente

Muoni in ATLAS

Livello 2

✓ µFast (standalone): Fit dei segmenti nelle MDT, misura della sagitta e stima del Pt al vertice tramite Look Up Table (~1ms)

✓ µComb (ID info): Estrapolazione della traccia alla superficie dell'ID.
 Matching con le tracce nel SCT e ridefinizione del Pt (~0.1ms)
 ✓ µISOL (Calo info): Isolamento (cono nel Calorimetro)

Event Filter

✓ TrigMOORE (standalone): Fit a tutti i possibli segmenti di traccia all'interno di una camera, selezionando la miglior combinazione puntante il vertice. Fit dei hit dei segmenti con elica utilizzando mappa del campo magnetico (~s)

✓ MUID (Combinato): Estrapolazione al vertice tramite LUT (inlcudendo scattering multiplo e energy loss). Selezione delle tracce nell'ID. Rifit con elica attraverso l'intero detector con tutti gli hit (~0.1s)

Algoritmi

Muoni in ATLAS

$L=10^{33} \text{ cm}^{-2} \text{ s}^{-1}$

Low p _t (6 GeV)	L1 (KHz)	µFast (KHz)	µComb (KHz)
K/π	7.10	2.70	0.90
b	1.40	0.75	0.58
с	0.80	0.40	0.32
Fake L1	1.0	~0	~0
Total	10.3	3.9	1.8

L=10³⁴ cm⁻² s⁻¹

High p _t (20 GeV)	L1 rate (KHz)	µFast (KHz)
K/π	0.68	0.04
b	0.5	0.06
с	0.21	0.02
W	0.03	0.03
Fake L1	~0	~0
Total	1.42	0.15

Algoritmi

e/γ in CMS

Livello 2 (solo Calorimetro)

✓ Conferma candidati di L1;

✓ Ricostruzione con algoritmi di Super-Cluster per recuperare bremsstrahlung e dipersione in ϕ dovuta a bending

✓ Cluster nella regione fiduciale (0< $|\eta|$ <1.4442, 1.566< $|\eta|$ <2.5). Soglie a 26 e 14 GeV per e singolo e doppio

Livello 2.5 (Pixel info)

✓ Propagazione all'indietro verso regione nel rivelatore di vertici (nessun bias grazie a "energy-weighted average impact point" in ECAL). Matching con >=2 hit

✓ Separazione degli streams di $e \in \gamma$. Ulteriore taglio su E_t dei γ .

Livello 3 Elettroni

✓ Ricostruzione della traccia nel tracker con seed da L2.5.

✓ Nel barrel taglio sulla distanza longitudinale tra posizione del cluster e traccia, nell'endcap taglio su H/E (E_t in HCAL e ECAL). Per entrambe le regioni taglio su E/p.

Livello 3 Fotoni

✓ Taglio stringente su E_t dei γ–clusters. Soglia asimettrica per i di-γ identica ad analisi offline H->γγ

✓ Isolamento: per $e \in \gamma$ possibile nei pixel, nel tracker e nell'ECAL

Algoritmi e/γ in CMS

Electrons P_T 10-50 GeV

162 /evento di L1

✓ La selezione degli eventi da scrivere su nastro e' condizionata dalla richiesta di massima efficienza per il programma di fisica, dalla bandwidth e dalla potenza di calocolo disponibili.

✓ Le selezioni possono essere raggruppate in classi:

- Trigger Inclusivi; per coprire il grosso del programma di fisica degli esperimenti
- Trigger Esclusivi; per estendere il programma di fisica a settori specifici (fisica del *b*)
- Trigger Prescalati, Calibrazione e Monitor; per misure di sezioni d'urto e efficenze dai dati (boostrap) e per capire lo stato e le prestazioni del rivelatore

 ✓ A ciascun trigger viene allocata parte della bandwitdh a seconda della fase dell'esperimento e delle condizioni della macchina e dei rivelatori

> In generale la lista delle selezioni deve essere flessibile, estendibile, non-biassante e adatta all' "inaspettato"

Tavole di Trigger

Esempio a *L*=2*10³³ cm⁻¹ s⁻¹

ATLAS

	ATL	AS	CMS	
Oggetto di Trigger	Soglia (GeV)	Rate (Hz)	Soglia (GeV)	Rate (Hz)
Muone Isolato	20	40	19	25
Doppio Muone	10	~40	7	4
Elettrone Isolato	25	40	29	33
Doppio Elettrone Isolato	15	~40	17	1
Fotone Isolato	60	25	80	4
Doppio Fotone Isolato	20	~25	40, 25	5
Singolo Jet, 3 Jet, 4 Jet	400, 165, 110	~25	657, 247, 113	9
Jet + Energia mancante	70, 70	~20	180,123	5
Tau + Energia mancante	35, 45	~5		
Tau jet inclusivo			86	3
Di-tau-jet			59	1
Elettrone + jet			19, 45	2
b-jets inclusivo			237	5
B-physics	2μ6 m _B /m _{J/y}	~10		
Altri (pre-scales, calibration,)		~20		10
Totale		~ 200		105

Tavole di Trigger

✓ Caveat 1: Solamente un "How to" per i rispettivi DAQ/HLT TDR. Molti i motivi per cui da ora allo startup ed anche in seguito, soglie e selezioni cambieranno:

- Eventuali scoperte di nuova fisica (e.g. Higgs a Tevatron)
- Migliore descrizione del modello standard (generatori MC a NLO)
- Comprensione del detector (test beam e commissioning)

✓ Caveat 2: Le rate associate a ciascun trigger sono da interpretare con cautela a causa delle diverse fonti di incertezza:

- Monte Carlo. ATLAS (CMS) $\sigma(pp)=70$ (50) mb, set di PDF, versione di Pythia Campioni utilizzati, trattamento dei Minimum Bias
- Simulazione detector
- Algoritmi di ricostruzione tuttora in fase di sviluppo

Un confronto diretto avra' senso solamente sulle rate da dati reali

Trigger Inclusivi

L	Trigger	Efficienza* (%)
	<i>e</i> 25i	96.5 ± 0.2
2*10 ³³ cm ⁻¹ s ⁻¹	2e15i	95.8 ± 0.2
	<i>e</i> 25i or 2 <i>e</i> 15i	96.7 ± 0.2
	<i>e</i> 30i	96.0 ± 0.4
10 ³⁴ cm ⁻¹ s ⁻¹	2 <i>e</i> 20i	94.5 ± 0.4
	<i>e</i> 30i or 2 <i>e</i> 20i	95.5 ± 0.3

*Efficienza calcolata rispetto a campione con preselezioni:

- 2 elettroni $p_T > 20$ GeV e $|\eta| < 2.5$;
- Secondi 2 elettroni $p_T > 7$ GeV e $|\eta| < 2.5$.

Trigger Esclusivi: Fisica del b

ATLAS

Soglie di trigger leptonici troppo alte per efficiente selezione di eventi di $b\overline{b}$ (~1/100 a LHC). Necessari trigger topologici esclusivi

✓ Esempio: mixing del $B_{s'}$, B_{s} -> $D_{s}X$, con D_{s} -> $\phi(K^{-}K^{+})\pi$

✓ Trigger basato su μ a basso pt e opportune condizioni cinematiche (M_{Inv}) per tracce ricostruite nell'Inner Detector

✓ Le regioni dell'ID in cui ricostruire possono venire suggerite al LVL2 dal LVL1 tramite RoI secondarie, richiedendo jet ricostruiti con E_t >6 GeV

 ✓ Ricostruzione del EF nelle RoI indicata da LVL2 (10% dell'ID). Maggiore risoluzione => tagli piu' stringenti

L	$B_s \rightarrow D_s X, D_s \rightarrow \phi \pi$		
Eff	~60%		
Rate a LVL2	60 Hz		
Rate a EF	9 Hz		

Trigger Esclusivi: Fisica del b

CMS

- ✓ B_s ->µ+µ e' un altro esempio di selezione di HLT topologica
- ✓ A L1 vengono selezionati eventi con 2µ p_T > 4 GeV (stream dimuone)
- ✓ Ricostruzione di HLT:
 - Primo passo. Ricostruiti tutte le coppie di hit nei pixel associabili a tracce con p_T >4 e IP<0.1cm. Selezionati 3 vertici primari ottenuti fittando tali tracce
- Secondo passo. Gli hits sono filtrati con constraint di vertice e di ΔR rispetto direzione indicata da L1. Comincia la ricostruzione nel tracker "seeded" da gli hit filtrati. Se vengono trovate 2 tracce con carica opposta si verifica se M_{Inv}=M_{Bs}±150 Mev. IP e χ² per ridurre combinatoria
 ✓ Simile all'offline ma con tagli piu' laschi e minor tempo di esecuzione (240ms a 1GHz)

Calibrazioni e Prescale

CMS

Esempio: Intercalibrazione del Calorimetro Elettromagnetico di CMS con eventi di trigger di jet

✓ Lo scopo e' di intercalibrare i cristalli ad $|\eta|$ fissata sfruttando la simmetria in ϕ dei depositi di energia. La interacalibrazione in η si ottiene da Z->ee

✓ Vengono utilizzati eventi di L1 con soglia di jet singolo a E_T >120 GeV. L' E_T degli L1 Jet viene corretta e la soglia portata a 150 GeV. Gli eventi che passano il taglio saturano una banda ad alta frequenza allocata per trigger di calibrazione (~1 kHz)

✓ Per non introdurre bias, vengono esclusi i cristalli colpiti dal trigger jet ($\Delta R < 1.0$) e quelli con depositi minori di 0.5 GeV (noise)

 ✓ La precisione del metodo varia da 2% a 3%. Miglioramenti includendo assimettria materiale del tracker

✓ Si ottengono risultati simili con trigger casuali (Minimum Bias) ma si ha il vantaggio di essere nel range di $e \in \gamma$ tipici di LHC

Commissioning

Idee per ATLAS

✓ Previste due fasi per il commisioning prima dell'inizio della presa dati su fascio:

- cosmici (fine 2006 Marzo 2007) rateo di cosmici con $p_{\mu} > 10$ GeV che attraversano la cavita' centarle: ~1Hz/strad fino a $\theta \approx 75^{\circ}$.
- fascio singolo (Aprile2007 Maggio 2007 ?) <u>Beam Halo</u>: (Muon: 10 Hz barrel, 150 Hz endcan

Rateo dei μ : $\begin{bmatrix} 3 \times 10^{10} \text{ p in} \\ 43 \text{ bunches} \end{bmatrix}$ $\begin{bmatrix} \text{Muon: 10 Hz barrel, 150 Hz endcap} \\ \text{E CALO (E> 5 GeV):1-2 Hz} \\ \text{H CALO (E > 20 GeV): 1-2 Hz} \\ \text{ID:1-10 Hz barrel, 2-20 endcap} \end{bmatrix}$

<u>Beam gas</u>: particelle con p_T basso il cui vertice di interazione e' distribuito lungo la beam pipe.

Rateo: 2500 interazioni / m / s

✓ Utilizzo :

- calibrazione allineamento e test dello Spettrometro
- calibrazione allineamento e timing dei Calorimetri
- allineamento del rivelatore centrale

Commissioning

Trigger per cosmici, Beam Halo/gas

- ✓ Come fare il trigger:
 - cosmici: RPC

~100 Hz di cosmici passano la soglia low- p_T del LVL1 RPC.

• Beam Halo: TGC

~ **1** Hz di cosmici passano la soglia low-*pT* del livello 1 TGC.

• Beam gas: si pensa di utilizzare scintillatori posti all'esterno del criostato del Calorimetro

Commissioning e ruolo degli HLT:

 ✓ verificare online l'infrastruttura senza agire sulla selezione (event flagging).

✓ validazione offline degli algoritmi.

✓ trigger di cosmici utilizando un algoritmo di track finding sugli hit delle camere MDT.

Startup - HLT Commisioning

"

Raccolta di "CMS PRS thoughts"

Assunzioni:

- ✓ Luminosita' estremamente bassa, 10²⁹ 10³⁰ cm⁻¹s⁻¹
- ✓ Detector e L1 Trigger "appena funzionanti" (staging, commissioning)
- ✓ Max input rate per DAQ ~10 kHz
- ✓ Sistema di read-out funzionante, data flow debuggato

Commissioning farm on-line:

- ✓ Inizialmente (ovviamente) nessuna selezione. Gli eventi sono taggati ed il controllo/debugging viene fatto off-line:
 - Spazio disco (~80TB) disponibile vicino al rivelatore per storare ~settimana a 100 Hz di dati
 - Sistema agile che consenta di loopare sui dati per verificare ricostruzione oggetti fisici. Analisi "quasi real time"
 - Streams di dati indipendenti
- ✓ Nuove release del codice fatte girare su parte della farm per controllo incrociato
- ✓ Commissioning dei database di calibrazione e configurazione on e off-line
 - Stabilire procedure per update locali e globali
 - Stabilire associazione tra contenuto dei databases e eseguibili di HLT

Raccolta di "CMS PRS thoughts"

Startup - Early Physics

✓ Luminosita' a 10³⁰ cm⁻¹s⁻¹ implica una rate 1000 volte inferiore rispetto alla nominale => Drastico abbassamento delle soglie:

- Jet fino a 70 GeV, $e/\gamma \sim 10$ GeV, μ "visibili"
- ✓ Runs di calibrazione e allineamento

✓ Prime misure di fisica: QCD, sezione d'urto W/Z, primi eventi di top; confronto con dati di Tevatron

Gli HLT di ATLAS e CMS, Marco Zanetti - INFN Padova

BAKUP SLIDES

Pre-scaling

CMS

IsoRate (Z'700->2j)for the 1 and 2-jet trigger

Trigger di elettrone

ATLAS

- \checkmark Calorimeter ET and shower shape variables to identify e.m. clusters
- Tracks in the inner detector
 - matching track to calorimeter cluster (electron)
 - conversion recovery (photon). Not yet available
- Electron identification with Transient Radiation information
- Bremstrahlung recovery

Reconstruction	LVL2	EF	
EM Cluster	T2Calo	LArClusterRec	
Track	IDScan SiTrack TRTkalman	xKalman++ iPatRec	
Combined cluster-track matching		egammaRec	

T2calo: Livello-2 del calorimetro

ATLAS

Algoritmo di clustering per gli sciami EM, guidato dalla posizione della Regione di Interesse del Livello-1.

Passi dell'algoritmo:

- Seleziona cluster elettromagnetici isolati usando i depositi di energia ed alcuni parametri di profilo dello sciame.
- Raffina la posizione del cluster usando la distribuzione dell'energia nel secondo campionamento.
- Calcola l'energia trasversa totale e la perdita di energia nel calorimetro adronico.

Ottimo accordo tra T2calo ed il programma di ricostruzione dell'esperimento.

IDscan: Livello-2 Inner Detector

ATLAS

Algoritmo di ricostruzione della traccia che usa I dati del Pixel detector e del Silicon Central Tracker (SCT).

	Bassa luminosita'	Alta luminosita'	
Z-Finder efficiency	97%	89%	
Hit Filter & Track Fitter efficiency	97%	98%	

Passi dell'algoritmo:

Z Vertex Finder

Determine z-position of the interaction

Hit Filter

Select only groups of space points consistent with the above z

Group Cleaner

Remove noise hits from group

Track Fitter

Fit parameters of accepted track

Sitrack & TRT: Livello-2 Inner Detector

ATLAS

SiTrack

Identifica il vertice primario usando il LVL1 μ . Ricostruisce segmenti di traccia nei Pixel e nell'SCT

- Algoritmo di b-tagging
- Costruisce segmenti di traccia usando due hit.
- La traccia viene estesa cercando corrispondenze tra gli hit dei pixel e degli altri layer SCT
- Esiste una implementazione per l'offline ed una per l'online

TRT

- Questo algoritmo e' parte di quello usato per la ricostruzione offline
- E' basato su histogrammi di Hough

Elettrone: Event Filter

ATLAS

L'Event Filter utilizza gli algoritmi di ricostruzione offline applicando tagli meno stringenti sulle variabili di selezione

Tuning della soglia per elettroni isolati di 25 GeV (e25i)

	L2 tracking on		L2 tracking off	
	Efficienza rispetto al LVL1	Rates	Efficienza rispetto al LVL1	Rates
LVL1	100 %	8.6 kHz	100 %	8.6 kHz
LVL2 Calo	97.3 %	1.9 kHz	97.3 %	1.9 kHz
LVL2 ID	93.1 %	393 Hz	93.1 %	
LVL2 ID and ID- Calo	91.0 %	169 Hz	91.0 %	
EF Calo	90.0 %	124 Hz	90.0 %	1.1 kHz
EF ID	84.9 %	76 Hz	84.9 %	108 Hz
EF ID-Calo	79.8 %	38 Hz	79.8 %	46 Hz

Tracking on/off significa applicare o meno un criterio di isolamento nel tracciatore centrale